Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Object Extraction and Encoding for Video Monitoring Through Low-Bandwidth Networks

Stramana, Franco Andrés; D'amato, Juan PabloIcon ; Dominguez, Leonardo DanielIcon ; Rubiales, Aldo JoseIcon ; Perez, Alejandro
Colaboradores: Figueroa García, Juan Carlos; Garay Rairán, Fabián Steven; Hernández Pérez, Germán Jairo; Díaz Gutierrez, Yesid
Tipo del evento: Congreso
Nombre del evento: Workshop on Engineering Applications: International Congress on Technology and Innovation for the Infantry
Fecha del evento: 07/10/2020
Institución Organizadora: Universidad Distrital Francisco José de Caldas; Universidad Nacional de Colombia;
Título del Libro: Applied Computer Sciences in Engineering
Editorial: Springer
ISSN: 1865-0929
e-ISSN: 1865-0937
ISBN: 978-3-030-61833-9
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Surveillance cameras in smart cities generate a dramatic amount of data each day, that must be transferred through communication channels. Most of this information is useless, just images of static scenarios that must be observed by thousands of monitor people. Even though there are plenty of algorithms that helps to automatically classify this information, the computational effort is still concentrated on transporting (coding/decoding) those images. This work aims to present the first results of applying an efficient software analyzer and encoder for static cameras that struggles to reduce computational effort and data generation. For this purpose, a combination of background segmentation and classification algorithms are used, which separate the moving objects from background and tag them using convolutional neural networks. For storing, a hyper-image organization structure is proposed, used for describing such objects in a minimal way. To have efficient algorithms, GPUs and multi-core processors are used. Several tests were carried out, on long video sequences, showing the amount of bandwidth that is reduced compare to other traditional encoders.
Palabras clave: VIDEO PROCESSING , GPGPU , VIDEO ENCODERS , SMAT CITIES
Ver el registro completo
 
Archivos asociados
Tamaño: 924.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/237520
URL: https://link.springer.com/chapter/10.1007/978-3-030-61834-6_37
DOI: https://doi.org/10.1007/978-3-030-61834-6_37
Colecciones
Eventos(CCT - TANDIL)
Eventos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Object Extraction and Encoding for Video Monitoring Through Low-Bandwidth Networks; Workshop on Engineering Applications: International Congress on Technology and Innovation for the Infantry; Bogotá; Colombia; 2020; 431-441
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES