Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Di Iorio y Lucero, María Eugenia
dc.date.available
2024-06-07T11:50:21Z
dc.date.issued
2024-04
dc.identifier.citation
Andruchow, Esteban; Di Iorio y Lucero, María Eugenia; Sphere bundle over the set of inner products in a Hilbert space; Elsevier Science; Differential Geometry and its Applications; 93; 4-2024; 1-20, 102092
dc.identifier.issn
0926-2245
dc.identifier.uri
http://hdl.handle.net/11336/237464
dc.description.abstract
Let (H, < , >) be a complex Hilbert space and B(H) the space of bounded linear operators in H. Any other equivalent inner product inH is of the form < f,g>_A=< Af,g> (f,g in H) for some positive invertible operator A in B(H). In this paper we study the bundle M which consist of the unit sphere {f in H: < f,f>_A=1} over each (equivalent) inner product < , >_A, which due to the observation above can be defined M={(A,f) in B(H) x H: A is positive and invertible and =1}.We prove that M is a complemented submanifold of the Banach space B(H) x H and a homogeneous space of the Banach-Lie group G(H) of invertible operators. We introduce a reductive structure in M, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of M, for instance, the one obtained when the positive elements A describing the inner products lie in a prescribed C*-algebra in B(H).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
POSITIVE INVERTIBLE OPERATORS
dc.subject
UNIT SPHERE
dc.subject
HOMOGENEOUS REDUCTIVE SPACES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sphere bundle over the set of inner products in a Hilbert space
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-04T14:55:11Z
dc.journal.volume
93
dc.journal.pagination
1-20, 102092
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.description.fil
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Differential Geometry and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2023.102092
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224523001183
Archivos asociados