Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Di Iorio y Lucero, María Eugenia  
dc.date.available
2024-06-07T11:50:21Z  
dc.date.issued
2024-04  
dc.identifier.citation
Andruchow, Esteban; Di Iorio y Lucero, María Eugenia; Sphere bundle over the set of inner products in a Hilbert space; Elsevier Science; Differential Geometry and its Applications; 93; 4-2024; 1-20, 102092  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/237464  
dc.description.abstract
Let (H, < , >) be a complex Hilbert space and B(H) the space of bounded linear operators in H. Any other equivalent inner product inH is of the form < f,g>_A=< Af,g> (f,g in H) for some positive invertible operator A in B(H). In this paper we study the bundle M which consist of the unit sphere {f in H: < f,f>_A=1} over each (equivalent) inner product < , >_A, which due to the observation above can be defined M={(A,f) in B(H) x H: A is positive and invertible and =1}.We prove that M is a complemented submanifold of the Banach space B(H) x H and a homogeneous space of the Banach-Lie group G(H) of invertible operators. We introduce a reductive structure in M, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of M, for instance, the one obtained when the positive elements A describing the inner products lie in a prescribed C*-algebra in B(H).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
POSITIVE INVERTIBLE OPERATORS  
dc.subject
UNIT SPHERE  
dc.subject
HOMOGENEOUS REDUCTIVE SPACES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sphere bundle over the set of inner products in a Hilbert space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-04T14:55:11Z  
dc.journal.volume
93  
dc.journal.pagination
1-20, 102092  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Differential Geometry and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2023.102092  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224523001183