Artículo
Sphere bundle over the set of inner products in a Hilbert space
Fecha de publicación:
04/2024
Editorial:
Elsevier Science
Revista:
Differential Geometry and its Applications
ISSN:
0926-2245
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let (H, < , >) be a complex Hilbert space and B(H) the space of bounded linear operators in H. Any other equivalent inner product inH is of the form < f,g>_A=< Af,g> (f,g in H) for some positive invertible operator A in B(H). In this paper we study the bundle M which consist of the unit sphere {f in H: < f,f>_A=1} over each (equivalent) inner product < , >_A, which due to the observation above can be defined M={(A,f) in B(H) x H: A is positive and invertible and =1}.We prove that M is a complemented submanifold of the Banach space B(H) x H and a homogeneous space of the Banach-Lie group G(H) of invertible operators. We introduce a reductive structure in M, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of M, for instance, the one obtained when the positive elements A describing the inner products lie in a prescribed C*-algebra in B(H).
Palabras clave:
POSITIVE INVERTIBLE OPERATORS
,
UNIT SPHERE
,
HOMOGENEOUS REDUCTIVE SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Di Iorio y Lucero, María Eugenia; Sphere bundle over the set of inner products in a Hilbert space; Elsevier Science; Differential Geometry and its Applications; 93; 4-2024; 1-20, 102092
Compartir
Altmétricas