Mostrar el registro sencillo del ítem
dc.contributor.author
Barrera, Pedro
dc.contributor.author
Vecino Schandy, Lorenza Guadalupe

dc.contributor.author
Bonomini, Maria Paula

dc.contributor.author
Mateos Díaz, Cristian
dc.contributor.author
Hirsch, M.
dc.contributor.author
Grana, L. R.
dc.contributor.author
Liberzcuk, Sergio
dc.date.available
2024-06-04T14:59:16Z
dc.date.issued
2023
dc.identifier.citation
A machine learning approach for atrial fibrillation detection in telemonitored patients; SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica; Buenos Aires; Argentina; 2023; 36-45
dc.identifier.isbn
978-3-031-61959-5
dc.identifier.uri
http://hdl.handle.net/11336/237044
dc.description.abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. As it is typically asymptomatic, it often goes undiagnosed until major complications arise, such as stroke. Therefore, the development of rapid, economical, and widely accessible diagnostic tools for detecting AF at an early stage is crucial. Telemonitoring with machine learning-assisted devices shows promise in achieving this goal. This paper presents an algorithm that automatically detects AF in signals obtained by portable electrocardiographs connected to a telemonitoring platform via smartphones. The algorithm consists of three stages: a noise detection, ectopic beat removal and an AF detection. The noise detection involves analyzing the ECG signals using 5-s windows with a 1-s shift. A K-nearest neighbors (KNN) classifier predicts the presence or absence of noise in each window, allowing for the detection of noisy and non-noisy segments of the signal. The non-noisy segments are processed using a Pan-Tompkins algorithm to find the R peaks of the signal, and the corresponding RR interval series. Then ectopic beats are removed using an XGBoost classifier, generating the NN series. In the AF detection stage, X features are obtained from this series, which serve as input features of an XGBoost classifier that predicts the presence or absence of AF in the ECG signal. The algorithm was trained and tested using the Physionet Short Single-Lead AF Database (SSLAFDB) and achieved an accuracy of 90.87% and an F1-score of 90.91%. Further validation was performed by an external partner using two other databases, reporting an accuracy of 90.41% and 89.61% respectively.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Machine Learning, Biomedical Signal Processing
dc.subject
ECG
dc.subject
Atrial Fibrillation
dc.subject
Telemonitoring
dc.subject.classification
Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
A machine learning approach for atrial fibrillation detection in telemonitored patients
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-09-25T14:32:15Z
dc.journal.volume
106
dc.journal.pagination
36-45
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Barrera, Pedro. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Vecino Schandy, Lorenza Guadalupe. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Mateos Díaz, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Hirsch, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Grana, L. R.. Virtual Sense S.A; Argentina
dc.description.fil
Fil: Liberzcuk, Sergio. Universidad Abierta Interamericana; Argentina. Universidad Nacional Arturo Jauretche; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/978-3-031-61960-1_4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-61960-1_4
dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica
dc.date.evento
2023-10-03
dc.description.ciudadEvento
Buenos Aires
dc.description.paisEvento
Argentina

dc.type.publicacion
Book
dc.description.institucionOrganizadora
Sociedad Argentina de Bioingeniería
dc.source.libro
International Federation for Medical and Biological Engineering (IFMBE) Proceedings
dc.date.eventoHasta
2023-10-06
dc.type
Congreso
Archivos asociados