Mostrar el registro sencillo del ítem

dc.contributor.author
Barrera, Pedro  
dc.contributor.author
Vecino Schandy, Lorenza Guadalupe  
dc.contributor.author
Bonomini, Maria Paula  
dc.contributor.author
Mateos Díaz, Cristian  
dc.contributor.author
Hirsch, M.  
dc.contributor.author
Grana, L. R.  
dc.contributor.author
Liberzcuk, Sergio  
dc.date.available
2024-06-04T14:59:16Z  
dc.date.issued
2023  
dc.identifier.citation
A machine learning approach for atrial fibrillation detection in telemonitored patients; SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica; Buenos Aires; Argentina; 2023; 36-45  
dc.identifier.isbn
978-3-031-61959-5  
dc.identifier.uri
http://hdl.handle.net/11336/237044  
dc.description.abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. As it is typically asymptomatic, it often goes undiagnosed until major complications arise, such as stroke. Therefore, the development of rapid, economical, and widely accessible diagnostic tools for detecting AF at an early stage is crucial. Telemonitoring with machine learning-assisted devices shows promise in achieving this goal. This paper presents an algorithm that automatically detects AF in signals obtained by portable electrocardiographs connected to a telemonitoring platform via smartphones. The algorithm consists of three stages: a noise detection, ectopic beat removal and an AF detection. The noise detection involves analyzing the ECG signals using 5-s windows with a 1-s shift. A K-nearest neighbors (KNN) classifier predicts the presence or absence of noise in each window, allowing for the detection of noisy and non-noisy segments of the signal. The non-noisy segments are processed using a Pan-Tompkins algorithm to find the R peaks of the signal, and the corresponding RR interval series. Then ectopic beats are removed using an XGBoost classifier, generating the NN series. In the AF detection stage, X features are obtained from this series, which serve as input features of an XGBoost classifier that predicts the presence or absence of AF in the ECG signal. The algorithm was trained and tested using the Physionet Short Single-Lead AF Database (SSLAFDB) and achieved an accuracy of 90.87% and an F1-score of 90.91%. Further validation was performed by an external partner using two other databases, reporting an accuracy of 90.41% and 89.61% respectively.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Machine Learning, Biomedical Signal Processing  
dc.subject
ECG  
dc.subject
Atrial Fibrillation  
dc.subject
Telemonitoring  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A machine learning approach for atrial fibrillation detection in telemonitored patients  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-09-25T14:32:15Z  
dc.journal.volume
106  
dc.journal.pagination
36-45  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Barrera, Pedro. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Vecino Schandy, Lorenza Guadalupe. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Mateos Díaz, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Hirsch, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Grana, L. R.. Virtual Sense S.A; Argentina  
dc.description.fil
Fil: Liberzcuk, Sergio. Universidad Abierta Interamericana; Argentina. Universidad Nacional Arturo Jauretche; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/978-3-031-61960-1_4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-61960-1_4  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica  
dc.date.evento
2023-10-03  
dc.description.ciudadEvento
Buenos Aires  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Sociedad Argentina de Bioingeniería  
dc.source.libro
International Federation for Medical and Biological Engineering (IFMBE) Proceedings  
dc.date.eventoHasta
2023-10-06  
dc.type
Congreso