Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A machine learning approach for atrial fibrillation detection in telemonitored patients

Barrera, Pedro; Vecino Schandy, Lorenza Guadalupe; Bonomini, Maria PaulaIcon ; Mateos Díaz, Cristian; Hirsch, M.; Grana, L. R.; Liberzcuk, Sergio
Tipo del evento: Congreso
Nombre del evento: SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica
Fecha del evento: 03/10/2023
Institución Organizadora: Sociedad Argentina de Bioingeniería;
Título del Libro: International Federation for Medical and Biological Engineering (IFMBE) Proceedings
Editorial: Springer Verlag
ISBN: 978-3-031-61959-5
Idioma: Inglés
Clasificación temática:
Ingeniería Médica

Resumen

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. As it is typically asymptomatic, it often goes undiagnosed until major complications arise, such as stroke. Therefore, the development of rapid, economical, and widely accessible diagnostic tools for detecting AF at an early stage is crucial. Telemonitoring with machine learning-assisted devices shows promise in achieving this goal. This paper presents an algorithm that automatically detects AF in signals obtained by portable electrocardiographs connected to a telemonitoring platform via smartphones. The algorithm consists of three stages: a noise detection, ectopic beat removal and an AF detection. The noise detection involves analyzing the ECG signals using 5-s windows with a 1-s shift. A K-nearest neighbors (KNN) classifier predicts the presence or absence of noise in each window, allowing for the detection of noisy and non-noisy segments of the signal. The non-noisy segments are processed using a Pan-Tompkins algorithm to find the R peaks of the signal, and the corresponding RR interval series. Then ectopic beats are removed using an XGBoost classifier, generating the NN series. In the AF detection stage, X features are obtained from this series, which serve as input features of an XGBoost classifier that predicts the presence or absence of AF in the ECG signal. The algorithm was trained and tested using the Physionet Short Single-Lead AF Database (SSLAFDB) and achieved an accuracy of 90.87% and an F1-score of 90.91%. Further validation was performed by an external partner using two other databases, reporting an accuracy of 90.41% and 89.61% respectively.
Palabras clave: Machine Learning, Biomedical Signal Processing , ECG , Atrial Fibrillation , Telemonitoring
Ver el registro completo
 
Archivos asociados
Tamaño: 371.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/237044
URL: https://doi.org/10.1007/978-3-031-61960-1_4
URL: https://link.springer.com/chapter/10.1007/978-3-031-61960-1_4
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
A machine learning approach for atrial fibrillation detection in telemonitored patients; SABI 2023: XXVI Congreso Argentino de Bioingeniería y XIII Jornadas de Ingeniería Clínica; Buenos Aires; Argentina; 2023; 36-45
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES