Mostrar el registro sencillo del ítem

dc.contributor.author
Sosa Escudero, Walter  
dc.contributor.author
Anauati, Maria Victoria  
dc.contributor.author
Brau, Wendy  
dc.contributor.other
Chan, Felix  
dc.contributor.other
Mátyás, László  
dc.date.available
2024-06-04T11:52:22Z  
dc.date.issued
2022  
dc.identifier.citation
Sosa Escudero, Walter; Anauati, Maria Victoria; Brau, Wendy; Poverty, Inequality and Development Studies with Machine Learning; Springer; 2022; 1-371  
dc.identifier.isbn
978-3-031-15148-4  
dc.identifier.uri
http://hdl.handle.net/11336/236944  
dc.description.abstract
This chapter provides a hopefully complete ‘ecosystem’ of the literature on the use of machine learning (ML) methods for poverty, inequality, and development (PID) studies. It proposes a novel taxonomy to classify the contributions of ML methods and new data sources used in this field. Contributions lie in two main categories. The first is making available better measurements and forecasts of PID indicators in terms of frequency, granularity, and coverage. The availability of more granular measurements has been the most extensive contribution of ML to PID studies. The second type of contribution involves the use of ML methods as well as new data sources for causal inference. Promising ML methods for improving existent causal inference techniques have been the main contribution in the theoretical arena, whereas taking advantage of the increased availability of new data sources to build or improve the outcome variable has been the main contribution in the empirical front. These inputs would not have been possible without the improvement in computational power.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MACHINE LEARNING  
dc.subject
BIG DATA  
dc.subject
POVERTY  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Poverty, Inequality and Development Studies with Machine Learning  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-06-04T11:16:24Z  
dc.journal.pagination
1-371  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Sosa Escudero, Walter. Universidad de San Andrés. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Anauati, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Economía; Argentina  
dc.description.fil
Fil: Brau, Wendy. Universidad de San Andrés; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-15149-1_9  
dc.conicet.paginas
371  
dc.source.titulo
Econometrics with Machine Learning