Mostrar el registro sencillo del ítem
dc.contributor.author
Sosa Escudero, Walter
dc.contributor.author
Anauati, Maria Victoria
dc.contributor.author
Brau, Wendy
dc.contributor.other
Chan, Felix
dc.contributor.other
Mátyás, László
dc.date.available
2024-06-04T11:52:22Z
dc.date.issued
2022
dc.identifier.citation
Sosa Escudero, Walter; Anauati, Maria Victoria; Brau, Wendy; Poverty, Inequality and Development Studies with Machine Learning; Springer; 2022; 1-371
dc.identifier.isbn
978-3-031-15148-4
dc.identifier.uri
http://hdl.handle.net/11336/236944
dc.description.abstract
This chapter provides a hopefully complete ‘ecosystem’ of the literature on the use of machine learning (ML) methods for poverty, inequality, and development (PID) studies. It proposes a novel taxonomy to classify the contributions of ML methods and new data sources used in this field. Contributions lie in two main categories. The first is making available better measurements and forecasts of PID indicators in terms of frequency, granularity, and coverage. The availability of more granular measurements has been the most extensive contribution of ML to PID studies. The second type of contribution involves the use of ML methods as well as new data sources for causal inference. Promising ML methods for improving existent causal inference techniques have been the main contribution in the theoretical arena, whereas taking advantage of the increased availability of new data sources to build or improve the outcome variable has been the main contribution in the empirical front. These inputs would not have been possible without the improvement in computational power.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MACHINE LEARNING
dc.subject
BIG DATA
dc.subject
POVERTY
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Poverty, Inequality and Development Studies with Machine Learning
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-06-04T11:16:24Z
dc.journal.pagination
1-371
dc.journal.pais
Suiza
dc.description.fil
Fil: Sosa Escudero, Walter. Universidad de San Andrés. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Anauati, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Economía; Argentina
dc.description.fil
Fil: Brau, Wendy. Universidad de San Andrés; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-15149-1_9
dc.conicet.paginas
371
dc.source.titulo
Econometrics with Machine Learning
Archivos asociados