Capítulo de Libro
Poverty, Inequality and Development Studies with Machine Learning
Título del libro: Econometrics with Machine Learning
Fecha de publicación:
2022
Editorial:
Springer
ISBN:
978-3-031-15148-4
Idioma:
Inglés
Clasificación temática:
Resumen
This chapter provides a hopefully complete ‘ecosystem’ of the literature on the use of machine learning (ML) methods for poverty, inequality, and development (PID) studies. It proposes a novel taxonomy to classify the contributions of ML methods and new data sources used in this field. Contributions lie in two main categories. The first is making available better measurements and forecasts of PID indicators in terms of frequency, granularity, and coverage. The availability of more granular measurements has been the most extensive contribution of ML to PID studies. The second type of contribution involves the use of ML methods as well as new data sources for causal inference. Promising ML methods for improving existent causal inference techniques have been the main contribution in the theoretical arena, whereas taking advantage of the increased availability of new data sources to build or improve the outcome variable has been the main contribution in the empirical front. These inputs would not have been possible without the improvement in computational power.
Palabras clave:
MACHINE LEARNING
,
BIG DATA
,
POVERTY
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(CCT - LA PLATA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Capítulos de libros(SEDE CENTRAL)
Capítulos de libros de SEDE CENTRAL
Capítulos de libros de SEDE CENTRAL
Citación
Sosa Escudero, Walter; Anauati, Maria Victoria; Brau, Wendy; Poverty, Inequality and Development Studies with Machine Learning; Springer; 2022; 1-371
Compartir