Mostrar el registro sencillo del ítem
dc.contributor.author
Stegmayer, Georgina
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Kamenetzky, Laura
dc.contributor.author
Lopez, Mariana Gabriela
dc.contributor.author
Carrari, Fernando Oscar
dc.date.available
2024-05-30T15:05:13Z
dc.date.issued
2012-01
dc.identifier.citation
Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-716
dc.identifier.issn
1545-5963
dc.identifier.uri
http://hdl.handle.net/11336/236594
dc.description.abstract
In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE Computer Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Clustering
dc.subject
validation measure
dc.subject
biological assessment
dc.subject
metabolic pathways
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-30T10:54:46Z
dc.journal.volume
9
dc.journal.number
3
dc.journal.pagination
706-716
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lopez, Mariana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6127857
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCBB.2012.10
Archivos asociados