Mostrar el registro sencillo del ítem

dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Kamenetzky, Laura  
dc.contributor.author
Lopez, Mariana Gabriela  
dc.contributor.author
Carrari, Fernando Oscar  
dc.date.available
2024-05-30T15:05:13Z  
dc.date.issued
2012-01  
dc.identifier.citation
Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-716  
dc.identifier.issn
1545-5963  
dc.identifier.uri
http://hdl.handle.net/11336/236594  
dc.description.abstract
In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Computer Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Clustering  
dc.subject
validation measure  
dc.subject
biological assessment  
dc.subject
metabolic pathways  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-30T10:54:46Z  
dc.journal.volume
9  
dc.journal.number
3  
dc.journal.pagination
706-716  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lopez, Mariana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6127857  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCBB.2012.10