Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets

Stegmayer, GeorginaIcon ; Milone, Diego HumbertoIcon ; Kamenetzky, LauraIcon ; Lopez, Mariana GabrielaIcon ; Carrari, Fernando OscarIcon
Fecha de publicación: 01/2012
Editorial: IEEE Computer Society
Revista: Ieee-acm Transactions On Computational Biology And Bioinformatics
ISSN: 1545-5963
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In the biological domain, clustering is based on the assumption that genes or metabolites involved in a common biological process are coexpressed/coaccumulated under the control of the same regulatory network. Thus, a detailed inspection of the grouped patterns to verify their memberships to well-known metabolic pathways could be very useful for the evaluation of clusters from a biological perspective. The aim of this work is to propose a novel approach for the comparison of clustering methods over metabolic data sets, including prior biological knowledge about the relation among elements that constitute the clusters. A way of measuring the biological significance of clustering solutions is proposed. This is addressed from the perspective of the usefulness of the clusters to identify those patterns that change in coordination and belong to common pathways of metabolic regulation. The measure summarizes in a compact way the objective analysis of clustering methods, which respects coherence and clusters distribution. It also evaluates the biological internal connections of such clusters considering common pathways. The proposed measure was tested in two biological databases using three clustering methods.
Palabras clave: Clustering , validation measure , biological assessment , metabolic pathways
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.083Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/236594
URL: https://ieeexplore.ieee.org/document/6127857
DOI: http://dx.doi.org/10.1109/TCBB.2012.10
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IMPAM)
Articulos de INSTITUTO DE INVESTIGACIONES EN MICROBIOLOGIA Y PARASITOLOGIA MEDICA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Stegmayer, Georgina; Milone, Diego Humberto; Kamenetzky, Laura; Lopez, Mariana Gabriela; Carrari, Fernando Oscar; A biologically-inspired validity measure for comparison of clustering methods over metabolic datasets; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 9; 3; 1-2012; 706-716
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES