Artículo
On the topological entropy of the irregular part of v-statistics multifractal spectra
Fecha de publicación:
12/2013
Editorial:
Taylor & Francis
Revista:
Journal of Dynamical Systems and Geometric Theories
ISSN:
1726-037X
e-ISSN:
2169-0057
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let (x, d) be a compact metric space and f : x → x, if xr is the product of r−copies of x, r ≥ 1, and φ : xr → r, then the multifractal decomposition for v −statistics is given by eφ (α) = ( x : lim n→∞ 1 nr p 0≤i1≤...≤ir≤n−1 φ ¡ f i1 (x) , ..., fir (x) ¢ = α ) . The irregular part, or historic set, of the spectrum is the set points x ∈ x, for which the limit does not exist. In this article we prove that for dynamical systems with specification, the irregular part of the v −statistics spectrum has topological entropy equal to that of the whole space x.
Palabras clave:
Topological Entropy
,
V-Statistics
,
Miltifractal Spectra
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Meson, Alejandro Mario; Vericat, Fernando; On the topological entropy of the irregular part of v-statistics multifractal spectra; Taylor & Francis; Journal of Dynamical Systems and Geometric Theories; 11; 1-2; 12-2013; 1-12
Compartir
Altmétricas