Mostrar el registro sencillo del ítem

dc.contributor.author
Portalanza, Diego  
dc.contributor.author
Pántano, Vanesa Cristina  
dc.contributor.author
Zuluaga, Cristian Felipe  
dc.contributor.author
Benso, Marcos Roberto  
dc.contributor.author
Corrales Suastegui, Arturo  
dc.contributor.author
Castillo, Natalia  
dc.contributor.author
Solman, Silvina Alicia  
dc.date.available
2024-05-15T13:13:49Z  
dc.date.issued
2024-01  
dc.identifier.citation
Portalanza, Diego; Pántano, Vanesa Cristina; Zuluaga, Cristian Felipe; Benso, Marcos Roberto; Corrales Suastegui, Arturo; et al.; Can extreme climatic and bioclimatic indices reproduce soy and maize yields in Latin America? Part 1: an observational and modeling perspective; Springer; Environmental Earth Sciences; 83; 6; 1-2024; 1-18  
dc.identifier.issn
1866-6299  
dc.identifier.uri
http://hdl.handle.net/11336/235412  
dc.description.abstract
According to the IPCC, most regions worldwide will be gradually exposed to the amplification of the duration, frequency, and intensity of extreme climatic events, and the effects that extreme events can cause on human well-being and the economy.This study aims to develop linear regression models to estimate the soy and maize yields from extreme climatic and bioclimatic indices in three geographical subregions of Latin America (Mexico, Brazil, and Argentina) between 1979 and 2005. We used daily datasets from observations (CPC), reanalysis (ERA5), and regional climate model (RCM) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) to investigate the impact of extreme eventsof temperature and precipitation on maize and soy yields over the CORDEX Central America and South America domains.We first assessed the RCMs’ performance in reproducing extreme indices by comparing them against observations. The validation process evidenced the need for applying bias correction techniques to simulate daily precipitation and temperature for a better performance of the indices. The results show a higher correlation between the daily temperature range (DTR), cold nights and warm nights for soy production in Argentina (R2: − 0.74, − 0.80 and 0.75, respectively) and Mexico (R2: − 0.80, − 0.81, 0.70) for maize. Regionally, the linear model (simulated with observed data) using these indices presented an agreement with observed yield data in Mexico and Brazil, with explained variances exceeding 70% for maize in these subregions, while Argentina presented a better performance for soy yield. An intriguing finding was the superior performance of linear models when used with CPC-corrected RCM data compared to ERA5. Taken together, our results highlight the capabilities and constraints of linear models as valuable tools for developing adaptation and mitigation strategies, enabling precise yield forecasting, and informing policy decisions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CORDEX CORE  
dc.subject
Agriculture productivity  
dc.subject
Extreme temperature and precipitation  
dc.subject
Regional climate model  
dc.subject
RegCM4 · REMO2015  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Can extreme climatic and bioclimatic indices reproduce soy and maize yields in Latin America? Part 1: an observational and modeling perspective  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-14T13:53:22Z  
dc.journal.volume
83  
dc.journal.number
6  
dc.journal.pagination
1-18  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Portalanza, Diego. Universidade Federal de Santa Maria; Brasil  
dc.description.fil
Fil: Pántano, Vanesa Cristina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Zuluaga, Cristian Felipe. No especifíca;  
dc.description.fil
Fil: Benso, Marcos Roberto. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Corrales Suastegui, Arturo. No especifíca;  
dc.description.fil
Fil: Castillo, Natalia. No especifíca;  
dc.description.fil
Fil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.journal.title
Environmental Earth Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12665-024-11461-0