Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Can extreme climatic and bioclimatic indices reproduce soy and maize yields in Latin America? Part 1: an observational and modeling perspective

Portalanza, Diego; Pántano, Vanesa CristinaIcon ; Zuluaga, Cristian Felipe; Benso, Marcos Roberto; Corrales Suastegui, Arturo; Castillo, Natalia; Solman, Silvina AliciaIcon
Fecha de publicación: 01/2024
Editorial: Springer
Revista: Environmental Earth Sciences
ISSN: 1866-6299
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Investigación Climatológica

Resumen

According to the IPCC, most regions worldwide will be gradually exposed to the amplification of the duration, frequency, and intensity of extreme climatic events, and the effects that extreme events can cause on human well-being and the economy.This study aims to develop linear regression models to estimate the soy and maize yields from extreme climatic and bioclimatic indices in three geographical subregions of Latin America (Mexico, Brazil, and Argentina) between 1979 and 2005. We used daily datasets from observations (CPC), reanalysis (ERA5), and regional climate model (RCM) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) to investigate the impact of extreme eventsof temperature and precipitation on maize and soy yields over the CORDEX Central America and South America domains.We first assessed the RCMs’ performance in reproducing extreme indices by comparing them against observations. The validation process evidenced the need for applying bias correction techniques to simulate daily precipitation and temperature for a better performance of the indices. The results show a higher correlation between the daily temperature range (DTR), cold nights and warm nights for soy production in Argentina (R2: − 0.74, − 0.80 and 0.75, respectively) and Mexico (R2: − 0.80, − 0.81, 0.70) for maize. Regionally, the linear model (simulated with observed data) using these indices presented an agreement with observed yield data in Mexico and Brazil, with explained variances exceeding 70% for maize in these subregions, while Argentina presented a better performance for soy yield. An intriguing finding was the superior performance of linear models when used with CPC-corrected RCM data compared to ERA5. Taken together, our results highlight the capabilities and constraints of linear models as valuable tools for developing adaptation and mitigation strategies, enabling precise yield forecasting, and informing policy decisions.
Palabras clave: CORDEX CORE , Agriculture productivity , Extreme temperature and precipitation , Regional climate model , RegCM4 · REMO2015
Ver el registro completo
 
Archivos asociados
Tamaño: 5.601Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/235412
DOI: http://dx.doi.org/10.1007/s12665-024-11461-0
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Portalanza, Diego; Pántano, Vanesa Cristina; Zuluaga, Cristian Felipe; Benso, Marcos Roberto; Corrales Suastegui, Arturo; et al.; Can extreme climatic and bioclimatic indices reproduce soy and maize yields in Latin America? Part 1: an observational and modeling perspective; Springer; Environmental Earth Sciences; 83; 6; 1-2024; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES