Mostrar el registro sencillo del ítem

dc.contributor.author
Valencia, Felipe J.  
dc.contributor.author
Ortega, Robinson  
dc.contributor.author
González, Rafael I.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Kiwi, Miguel  
dc.contributor.author
Ruestes, Carlos Javier  
dc.date.available
2024-05-14T15:32:08Z  
dc.date.issued
2022-03  
dc.identifier.citation
Valencia, Felipe J.; Ortega, Robinson; González, Rafael I.; Bringa, Eduardo Marcial; Kiwi, Miguel; et al.; Nanoindentation of nanoporous tungsten: A molecular dynamics approach; Elsevier; Computational Materials Science; 209; 3-2022; 1-8  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/235359  
dc.description.abstract
Nanoporous metals, also known as metallic nanofoams, offer a wide range of functionalities and improved mechanical properties enabled by nanoscale effects. In particular, tungsten nanofoams are a novel class of materials with potential applications as radiation-resistant coating, and they share some similarities with the fuzz structure arising in fusion devices. We approach their study by nanoindentation tests using molecular dynamics simulations, for a single crystal nanofoam. To help understanding the foam mechanical behavior we also carry out simulations of W nanowire compression, finding elastic moduli of 375–450 GPa, and plastic yielding at 15 GPa. For the nanofoam, we obtain an elastic modulus of 64 GPa, in reasonable agreement with experiments, but our hardness value of 15 GPa is higher, likely due to nanocrystalline effects in the experiment. Atomistic simulations reveal that plastic deformation is caused by a combination of dislocations and twinning in the neighborhood of the indenter surface. It was found that twins also promote complete amorphization of some thin filaments in contact with the indenter tip. Dislocation activity also produces vacancies in the plastic region. Besides, the displacement induced by the indenter also drives changes of the network topology mainly due to densification, filament bending and twisting. Dislocation density is lower in the foam than in bulk indentation, due to the dislocation annihilation on the filament surfaces, but also because of changes in network topology help accommodate strain. Based on the simulation results, a nanoporous bcc foam behaves differently than a fcc foam, but still displays excellent mechanical properties for a low density material, and also offer additional technological advantages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
tungsten  
dc.subject
nanoindentation  
dc.subject
molecular dynamics  
dc.subject
plasticity  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Nanoindentation of nanoporous tungsten: A molecular dynamics approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-10T15:33:18Z  
dc.journal.volume
209  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile  
dc.description.fil
Fil: Ortega, Robinson. Universidad Mayor; Chile  
dc.description.fil
Fil: González, Rafael I.. Universidad Mayor; Chile  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor; Chile  
dc.description.fil
Fil: Kiwi, Miguel. Universidad de Chile; Chile  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2022.111336