Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Nanoindentation of nanoporous tungsten: A molecular dynamics approach

Valencia, Felipe J.; Ortega, Robinson; González, Rafael I.; Bringa, Eduardo MarcialIcon ; Kiwi, Miguel; Ruestes, Carlos JavierIcon
Fecha de publicación: 03/2022
Editorial: Elsevier
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Nanoporous metals, also known as metallic nanofoams, offer a wide range of functionalities and improved mechanical properties enabled by nanoscale effects. In particular, tungsten nanofoams are a novel class of materials with potential applications as radiation-resistant coating, and they share some similarities with the fuzz structure arising in fusion devices. We approach their study by nanoindentation tests using molecular dynamics simulations, for a single crystal nanofoam. To help understanding the foam mechanical behavior we also carry out simulations of W nanowire compression, finding elastic moduli of 375–450 GPa, and plastic yielding at 15 GPa. For the nanofoam, we obtain an elastic modulus of 64 GPa, in reasonable agreement with experiments, but our hardness value of 15 GPa is higher, likely due to nanocrystalline effects in the experiment. Atomistic simulations reveal that plastic deformation is caused by a combination of dislocations and twinning in the neighborhood of the indenter surface. It was found that twins also promote complete amorphization of some thin filaments in contact with the indenter tip. Dislocation activity also produces vacancies in the plastic region. Besides, the displacement induced by the indenter also drives changes of the network topology mainly due to densification, filament bending and twisting. Dislocation density is lower in the foam than in bulk indentation, due to the dislocation annihilation on the filament surfaces, but also because of changes in network topology help accommodate strain. Based on the simulation results, a nanoporous bcc foam behaves differently than a fcc foam, but still displays excellent mechanical properties for a low density material, and also offer additional technological advantages.
Palabras clave: tungsten , nanoindentation , molecular dynamics , plasticity
Ver el registro completo
 
Archivos asociados
Tamaño: 1.881Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/235359
DOI: http://dx.doi.org/10.1016/j.commatsci.2022.111336
Colecciones
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Citación
Valencia, Felipe J.; Ortega, Robinson; González, Rafael I.; Bringa, Eduardo Marcial; Kiwi, Miguel; et al.; Nanoindentation of nanoporous tungsten: A molecular dynamics approach; Elsevier; Computational Materials Science; 209; 3-2022; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES