Mostrar el registro sencillo del ítem
dc.contributor.author
Gómez Penedo, Juan Martín
dc.contributor.author
Rubel, Julian
dc.contributor.author
Meglio, Manuel
dc.contributor.author
Bornhauser, Leo
dc.contributor.author
Krieger, Tobias
dc.contributor.author
Babl, Anna
dc.contributor.author
Muiños, Roberto Daniel
dc.contributor.author
Roussos, Andres Jorge
dc.contributor.author
Delgadillo, Jaime
dc.contributor.author
Flückiger, Christoph
dc.contributor.author
Berger, Thomas
dc.contributor.author
Lutz, Wolfgang
dc.contributor.author
Grosse Holtforth, Martin
dc.date.available
2024-05-13T13:59:52Z
dc.date.issued
2023-08
dc.identifier.citation
Gómez Penedo, Juan Martín; Rubel, Julian; Meglio, Manuel; Bornhauser, Leo; Krieger, Tobias; et al.; Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization; American Psychological Association; Psychotherapy; 60; 4; 8-2023; 536-547
dc.identifier.issn
1939-1536
dc.identifier.uri
http://hdl.handle.net/11336/235260
dc.description.abstract
This study aimed to develop and test algorithms to determine the individual relevance of two psychotherapeutic change processes (i.e., mastery and clarification) for outcome prediction. We measured process and outcome variables in a naturalistic outpatient sample treated with an integrative treatment for a variety of diagnoses (n = 608) during the first 10 sessions. We estimated individual within-patient effects of each therapist-evaluated process of change on patient-evaluated subsequent outcomes on a session-bysession basis. Using patients’ baseline characteristics, we trained machine learning algorithms on a randomly selected subsample (n = 407) to predict the effects of patients’ process variables on outcome. We subsequently tested the predictive capacity of the best algorithm for each process on a holdout subsample (n = 201). We found significant within-patient effects of therapist perceived mastery and clarification on subsequent outcome. In the holdout subsample, the best-performing algorithms resulted in significant but small-to-medium correlations between the predicted and observed relevance of therapist perceived mastery (r = .18) and clarification (r = .16). Using the algorithms to create criteria for individual recommendations, in the holdout sample, we identified patients for whom mastery (14%) or clarification (18%) were indicated. In the mastery-indicated group, a greater focus on mastery was moderately associated with better outcome (r = .33, d = .70), while in the clarification-indicated group, the focus was not related to outcome (r = −.05, d = .10). Results support the feasibility of performing individual predictions regarding mastery process relevance that can be useful for therapist feedback and treatment recommendations. However, results will need to be replicated with prospective experimental designs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Psychological Association
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
psychotherapy
dc.subject
mastery
dc.subject
clarification
dc.subject
machine learning
dc.subject.classification
Otras Psicología
dc.subject.classification
Psicología
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-13T10:34:15Z
dc.journal.volume
60
dc.journal.number
4
dc.journal.pagination
536-547
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Gómez Penedo, Juan Martín. Universidad de Buenos Aires. Facultad de Psicología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rubel, Julian. Justus Liebig Universitat Giessen; Alemania
dc.description.fil
Fil: Meglio, Manuel. Universidad de Buenos Aires. Facultad de Psicología; Argentina
dc.description.fil
Fil: Bornhauser, Leo. University of Bern; Suiza
dc.description.fil
Fil: Krieger, Tobias. University of Bern; Suiza
dc.description.fil
Fil: Babl, Anna. University of Bern; Suiza
dc.description.fil
Fil: Muiños, Roberto Daniel. Universidad de Buenos Aires. Facultad de Psicología; Argentina
dc.description.fil
Fil: Roussos, Andres Jorge. Universidad Nacional del Comahue. Instituto Patagónico de Estudios de Humanidades y Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Patagónico de Estudios de Humanidades y Ciencias Sociales; Argentina
dc.description.fil
Fil: Delgadillo, Jaime. University Of Sheffield (university Of Sheffield);
dc.description.fil
Fil: Flückiger, Christoph. Universitat Zurich; Suiza. University of Kassel; Alemania
dc.description.fil
Fil: Berger, Thomas. University of Bern; Suiza
dc.description.fil
Fil: Lutz, Wolfgang. Universitat Trier; Alemania
dc.description.fil
Fil: Grosse Holtforth, Martin. University of Bern; Suiza
dc.journal.title
Psychotherapy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1037/pst0000507
Archivos asociados