Mostrar el registro sencillo del ítem

dc.contributor.author
Gómez Penedo, Juan Martín  
dc.contributor.author
Rubel, Julian  
dc.contributor.author
Meglio, Manuel  
dc.contributor.author
Bornhauser, Leo  
dc.contributor.author
Krieger, Tobias  
dc.contributor.author
Babl, Anna  
dc.contributor.author
Muiños, Roberto Daniel  
dc.contributor.author
Roussos, Andres Jorge  
dc.contributor.author
Delgadillo, Jaime  
dc.contributor.author
Flückiger, Christoph  
dc.contributor.author
Berger, Thomas  
dc.contributor.author
Lutz, Wolfgang  
dc.contributor.author
Grosse Holtforth, Martin  
dc.date.available
2024-05-13T13:59:52Z  
dc.date.issued
2023-08  
dc.identifier.citation
Gómez Penedo, Juan Martín; Rubel, Julian; Meglio, Manuel; Bornhauser, Leo; Krieger, Tobias; et al.; Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization; American Psychological Association; Psychotherapy; 60; 4; 8-2023; 536-547  
dc.identifier.issn
1939-1536  
dc.identifier.uri
http://hdl.handle.net/11336/235260  
dc.description.abstract
This study aimed to develop and test algorithms to determine the individual relevance of two psychotherapeutic change processes (i.e., mastery and clarification) for outcome prediction. We measured process and outcome variables in a naturalistic outpatient sample treated with an integrative treatment for a variety of diagnoses (n = 608) during the first 10 sessions. We estimated individual within-patient effects of each therapist-evaluated process of change on patient-evaluated subsequent outcomes on a session-bysession basis. Using patients’ baseline characteristics, we trained machine learning algorithms on a randomly selected subsample (n = 407) to predict the effects of patients’ process variables on outcome. We subsequently tested the predictive capacity of the best algorithm for each process on a holdout subsample (n = 201). We found significant within-patient effects of therapist perceived mastery and clarification on subsequent outcome. In the holdout subsample, the best-performing algorithms resulted in significant but small-to-medium correlations between the predicted and observed relevance of therapist perceived mastery (r = .18) and clarification (r = .16). Using the algorithms to create criteria for individual recommendations, in the holdout sample, we identified patients for whom mastery (14%) or clarification (18%) were indicated. In the mastery-indicated group, a greater focus on mastery was moderately associated with better outcome (r = .33, d = .70), while in the clarification-indicated group, the focus was not related to outcome (r = −.05, d = .10). Results support the feasibility of performing individual predictions regarding mastery process relevance that can be useful for therapist feedback and treatment recommendations. However, results will need to be replicated with prospective experimental designs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Psychological Association  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
psychotherapy  
dc.subject
mastery  
dc.subject
clarification  
dc.subject
machine learning  
dc.subject.classification
Otras Psicología  
dc.subject.classification
Psicología  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-13T10:34:15Z  
dc.journal.volume
60  
dc.journal.number
4  
dc.journal.pagination
536-547  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gómez Penedo, Juan Martín. Universidad de Buenos Aires. Facultad de Psicología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rubel, Julian. Justus Liebig Universitat Giessen; Alemania  
dc.description.fil
Fil: Meglio, Manuel. Universidad de Buenos Aires. Facultad de Psicología; Argentina  
dc.description.fil
Fil: Bornhauser, Leo. University of Bern; Suiza  
dc.description.fil
Fil: Krieger, Tobias. University of Bern; Suiza  
dc.description.fil
Fil: Babl, Anna. University of Bern; Suiza  
dc.description.fil
Fil: Muiños, Roberto Daniel. Universidad de Buenos Aires. Facultad de Psicología; Argentina  
dc.description.fil
Fil: Roussos, Andres Jorge. Universidad Nacional del Comahue. Instituto Patagónico de Estudios de Humanidades y Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Patagónico de Estudios de Humanidades y Ciencias Sociales; Argentina  
dc.description.fil
Fil: Delgadillo, Jaime. University Of Sheffield (university Of Sheffield);  
dc.description.fil
Fil: Flückiger, Christoph. Universitat Zurich; Suiza. University of Kassel; Alemania  
dc.description.fil
Fil: Berger, Thomas. University of Bern; Suiza  
dc.description.fil
Fil: Lutz, Wolfgang. Universitat Trier; Alemania  
dc.description.fil
Fil: Grosse Holtforth, Martin. University of Bern; Suiza  
dc.journal.title
Psychotherapy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1037/pst0000507