Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization

Gómez Penedo, Juan MartínIcon ; Rubel, Julian; Meglio, Manuel; Bornhauser, Leo; Krieger, Tobias; Babl, Anna; Muiños, Roberto Daniel; Roussos, Andres JorgeIcon ; Delgadillo, Jaime; Flückiger, Christoph; Berger, Thomas; Lutz, Wolfgang; Grosse Holtforth, Martin
Fecha de publicación: 08/2023
Editorial: American Psychological Association
Revista: Psychotherapy
ISSN: 1939-1536
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Psicología

Resumen

This study aimed to develop and test algorithms to determine the individual relevance of two psychotherapeutic change processes (i.e., mastery and clarification) for outcome prediction. We measured process and outcome variables in a naturalistic outpatient sample treated with an integrative treatment for a variety of diagnoses (n = 608) during the first 10 sessions. We estimated individual within-patient effects of each therapist-evaluated process of change on patient-evaluated subsequent outcomes on a session-bysession basis. Using patients’ baseline characteristics, we trained machine learning algorithms on a randomly selected subsample (n = 407) to predict the effects of patients’ process variables on outcome. We subsequently tested the predictive capacity of the best algorithm for each process on a holdout subsample (n = 201). We found significant within-patient effects of therapist perceived mastery and clarification on subsequent outcome. In the holdout subsample, the best-performing algorithms resulted in significant but small-to-medium correlations between the predicted and observed relevance of therapist perceived mastery (r = .18) and clarification (r = .16). Using the algorithms to create criteria for individual recommendations, in the holdout sample, we identified patients for whom mastery (14%) or clarification (18%) were indicated. In the mastery-indicated group, a greater focus on mastery was moderately associated with better outcome (r = .33, d = .70), while in the clarification-indicated group, the focus was not related to outcome (r = −.05, d = .10). Results support the feasibility of performing individual predictions regarding mastery process relevance that can be useful for therapist feedback and treatment recommendations. However, results will need to be replicated with prospective experimental designs.
Palabras clave: psychotherapy , mastery , clarification , machine learning
Ver el registro completo
 
Archivos asociados
Tamaño: 400.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/235260
DOI: http://dx.doi.org/10.1037/pst0000507
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Gómez Penedo, Juan Martín; Rubel, Julian; Meglio, Manuel; Bornhauser, Leo; Krieger, Tobias; et al.; Using Machine Learning Algorithms to Predict the Effects of Change Processes in Psychotherapy: Toward Process-Level Treatment Personalization; American Psychological Association; Psychotherapy; 60; 4; 8-2023; 536-547
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES