Mostrar el registro sencillo del ítem
dc.contributor.author
Ceretani, Andrea Noemí
dc.contributor.author
Rautenberg, Carlos N.
dc.date.available
2024-05-08T15:36:24Z
dc.date.issued
2023-10
dc.identifier.citation
Ceretani, Andrea Noemí; Rautenberg, Carlos N.; The spatially variant fractional Laplacian; Springer; Fractional Calculus and Applied Analysis; 26; 6; 10-2023; 2837-2873
dc.identifier.issn
1314-2224
dc.identifier.uri
http://hdl.handle.net/11336/234955
dc.description.abstract
We introduce a definition of the fractional Laplacian (−Δ)^s(⋅) with spatially variable order s:Ω→[0,1] and study the solvability of the associated Poisson problem on a bounded domain Ω. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga and Torrea; however the analytical tools and approaches developed here are new. For instance, in some cases we allow the variable order s(⋅) to attain the values 0 and 1 leading to a framework on weighted Sobolev spaces with non-Muckenhoupt weights. Initially, and under minimal assumptions, the operator (−Δ)^s(⋅) is identified as the Lagrange multiplier corresponding to an optimization problem; and its domain is determined as a quotient space of weighted Sobolev spaces. The well-posedness of the associated Poisson problem is then obtained for data in the dual of this quotient space. Subsequently, two trace regularity results are established, allowing to partially characterize functions in the aforementioned quotient space whenever a Poincaré type inequality is available. Precise examples are provided where such inequality holds, and in this case the domain of the operator (−Δ)^s(⋅) is identified with a subset of a weighted Sobolev space with spatially variant smoothness s(⋅). The latter further allows to prove the well-posedness of the Poisson problem assuming functional regularity of the data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FRACTIONAL ORDER SOBOLEV SPACE
dc.subject
SPATIALLY VARYING EXPONENT
dc.subject
TRACE THEOREM
dc.subject
FRACTIONAL LAPLACIAN WITH VARIABLE EXPONENT
dc.subject
HARDY-TYPE INEQUALITIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The spatially variant fractional Laplacian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-03T13:57:33Z
dc.journal.volume
26
dc.journal.number
6
dc.journal.pagination
2837-2873
dc.journal.pais
Suiza
dc.description.fil
Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Rautenberg, Carlos N.. George Mason University; Estados Unidos
dc.journal.title
Fractional Calculus and Applied Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13540-023-00212-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13540-023-00212-w
Archivos asociados