Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The spatially variant fractional Laplacian

Ceretani, Andrea NoemíIcon ; Rautenberg, Carlos N.
Fecha de publicación: 10/2023
Editorial: Springer
Revista: Fractional Calculus and Applied Analysis
ISSN: 1314-2224
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We introduce a definition of the fractional Laplacian (−Δ)^s(⋅) with spatially variable order s:Ω→[0,1] and study the solvability of the associated Poisson problem on a bounded domain Ω. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga and Torrea; however the analytical tools and approaches developed here are new. For instance, in some cases we allow the variable order s(⋅) to attain the values 0 and 1 leading to a framework on weighted Sobolev spaces with non-Muckenhoupt weights. Initially, and under minimal assumptions, the operator (−Δ)^s(⋅) is identified as the Lagrange multiplier corresponding to an optimization problem; and its domain is determined as a quotient space of weighted Sobolev spaces. The well-posedness of the associated Poisson problem is then obtained for data in the dual of this quotient space. Subsequently, two trace regularity results are established, allowing to partially characterize functions in the aforementioned quotient space whenever a Poincaré type inequality is available. Precise examples are provided where such inequality holds, and in this case the domain of the operator (−Δ)^s(⋅) is identified with a subset of a weighted Sobolev space with spatially variant smoothness s(⋅). The latter further allows to prove the well-posedness of the Poisson problem assuming functional regularity of the data.
Palabras clave: FRACTIONAL ORDER SOBOLEV SPACE , SPATIALLY VARYING EXPONENT , TRACE THEOREM , FRACTIONAL LAPLACIAN WITH VARIABLE EXPONENT , HARDY-TYPE INEQUALITIES
Ver el registro completo
 
Archivos asociados
Tamaño: 572.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/234955
DOI: http://dx.doi.org/10.1007/s13540-023-00212-w
URL: https://link.springer.com/article/10.1007/s13540-023-00212-w
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ceretani, Andrea Noemí; Rautenberg, Carlos N.; The spatially variant fractional Laplacian; Springer; Fractional Calculus and Applied Analysis; 26; 6; 10-2023; 2837-2873
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES