Mostrar el registro sencillo del ítem

dc.contributor.author
Barbieri, Davide  
dc.contributor.author
Cabrelli, Carlos  
dc.contributor.author
Hernández, Eugenio  
dc.contributor.author
Molter, Ursula Maria  
dc.date.available
2024-05-07T15:10:08Z  
dc.date.issued
2024-03  
dc.identifier.citation
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Learning optimal smooth invariant subspaces for data approximation; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 538; 2; 3-2024; 1-20  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/234790  
dc.description.abstract
In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
INVARIANT SUBSPACES  
dc.subject
DATA APPROXIMATION  
dc.subject
PALEY-WIENER SPACES  
dc.subject
OPTIMAL SUBSPACES  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning optimal smooth invariant subspaces for data approximation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-03T13:57:17Z  
dc.journal.volume
538  
dc.journal.number
2  
dc.journal.pagination
1-20  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Barbieri, Davide. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Hernández, Eugenio. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2024.128348  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X24002701?via%3Dihub