Artículo
Learning optimal smooth invariant subspaces for data approximation
Fecha de publicación:
03/2024
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated by a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, which is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Learning optimal smooth invariant subspaces for data approximation; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 538; 2; 3-2024; 1-20
Compartir
Altmétricas