Artículo
Rational certificates of non-negativity on semialgebraic subsets of cylinders
Fecha de publicación:
06/2024
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let g1, . . . , gs ∈ R[X1, . . . , Xn, Y ] and S = {(¯x, y) ∈ R n+1 | g1(¯x, y) ≥ 0, . . . , gs(¯x, y) ≥ 0} be a non-empty, possibly unbounded, subset of a cylinder in R n+1. Let f ∈ R[X1, . . . , Xn, Y ] be a polynomial which is positive on S. We prove that, under certain additional assumptions, for any non-constant polynomial q ∈ R[Y ] which is positive on R, there is a certificate of the non-negativity of f on S given by a rational function having as numerator a polynomial in the quadratic module generated by g1, . . . , gs and as denominator a power of q.
Palabras clave:
POSITIVSTELLENSATZ
,
POSITIVE POLYNOMIALS
,
SUMS OF SQUARES
,
QUADRATIC MODULES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Jeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Rational certificates of non-negativity on semialgebraic subsets of cylinders; Elsevier Science; Journal Of Pure And Applied Algebra; 228; 6; 6-2024; 1-12
Compartir
Altmétricas