Mostrar el registro sencillo del ítem
dc.contributor.author
Hurtado, Martin
dc.contributor.author
Muravchik, Carlos Horacio
dc.contributor.author
Nehorai, Arye
dc.date.available
2017-08-31T22:03:38Z
dc.date.issued
2013-11
dc.identifier.citation
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
dc.identifier.issn
1053-587X
dc.identifier.uri
http://hdl.handle.net/11336/23419
dc.description.abstract
In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bayesian Estimation
dc.subject
Constant False Alarm Rate (Cfar)
dc.subject
Probabilistic Framework
dc.subject
Radar
dc.subject
Radar Detection
dc.subject
Sparse Model
dc.subject
Sparse Signal Reconstruction
dc.subject
Statistical Thresholding
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-30T13:34:56Z
dc.journal.volume
61
dc.journal.number
21
dc.journal.pagination
5430-5443
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Nehorai, Arye. Washington University in St. Louis; Estados Unidos
dc.journal.title
IEEE Transactions On Signal Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSP.2013.2278811
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/
Archivos asociados