Artículo
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
Fecha de publicación:
11/2013
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
Compartir
Altmétricas