Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise

Hurtado, MartinIcon ; Muravchik, Carlos Horacio; Nehorai, Arye
Fecha de publicación: 11/2013
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Transactions On Signal Processing
ISSN: 1053-587X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
Palabras clave: Bayesian Estimation , Constant False Alarm Rate (Cfar) , Probabilistic Framework , Radar , Radar Detection , Sparse Model , Sparse Signal Reconstruction , Statistical Thresholding
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.721Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/23419
DOI: http://dx.doi.org/10.1109/TSP.2013.2278811
URL: http://ieeexplore.ieee.org/document/6581884/
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES