Mostrar el registro sencillo del ítem
dc.contributor.author
Montani, Fernando Fabián
dc.contributor.author
Phoka, Elena
dc.contributor.author
Portesi, Mariela Adelina
dc.contributor.author
Schultz, Simon R.
dc.date.available
2017-08-31T21:27:57Z
dc.date.issued
2013-03
dc.identifier.citation
Montani, Fernando Fabián; Phoka, Elena; Portesi, Mariela Adelina; Schultz, Simon R.; Statistical modelling of higher-order correlations in pools of neural activity; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 14; 3-2013; 3066-3086
dc.identifier.issn
0378-4371
dc.identifier.uri
http://hdl.handle.net/11336/23406
dc.description.abstract
Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2^N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Neural Activity
dc.subject
Spike Correlations
dc.subject
High-Order Correlations
dc.subject
Information-Geometry Approach
dc.title
Statistical modelling of higher-order correlations in pools of neural activity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-31T20:29:14Z
dc.journal.volume
392
dc.journal.number
14
dc.journal.pagination
3066-3086
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
dc.description.fil
Fil: Phoka, Elena. Imperial College London; Reino Unido
dc.description.fil
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
dc.description.fil
Fil: Schultz, Simon R.. Imperial College London; Reino Unido
dc.journal.title
Physica A: Statistical Mechanics and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2013.03.012
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711300215X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.6348
Archivos asociados