Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Statistical modelling of higher-order correlations in pools of neural activity

Montani, Fernando FabiánIcon ; Phoka, Elena; Portesi, Mariela AdelinaIcon ; Schultz, Simon R.
Fecha de publicación: 03/2013
Editorial: Elsevier Science
Revista: Physica A: Statistical Mechanics and its Applications
ISSN: 0378-4371
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2^N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity.
Palabras clave: Neural Activity , Spike Correlations , High-Order Correlations , Information-Geometry Approach
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 615.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/23406
DOI: http://dx.doi.org/10.1016/j.physa.2013.03.012
URL: http://www.sciencedirect.com/science/article/pii/S037843711300215X
URL: https://arxiv.org/abs/1211.6348
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Montani, Fernando Fabián; Phoka, Elena; Portesi, Mariela Adelina; Schultz, Simon R.; Statistical modelling of higher-order correlations in pools of neural activity; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 14; 3-2013; 3066-3086
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES