Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

PACMAN: PAC-style bounds accounting for the Mismatch between Accuracy and Negative log-loss

Vera, Matías AlejandroIcon ; Rey Vega, Leonardo JavierIcon ; Piantanida, Pablo
Fecha de publicación: 03/2024
Editorial: Oxford University Press
Revista: Information and Inference
ISSN: 2049-8772
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

The ultimate performance of machine learning algorithms for classification tasks is usually measured in terms of the empirical error probability (or accuracy) using a testing dataset. Whereas, these algorithms are optimized through the minimization of a typically different---more convenient---loss function using a training set. For classification tasks, this loss function is often the negative log-loss which yields the well-known cross-entropy risk that is typically better behaved (in terms of numerical behavior) than the zero-one loss. Conventional studies on the generalization error do not usually take into account the underlying mismatch between losses at training and testing phases. In this work, we introduce a theoretical analysis based on a pointwise PAC approach over the generalization gap considering the mismatch of testing on the accuracy metric and training on the negative log-loss, referred to as PACMAN. Building on the fact that the resulting mismatch can be written as a likelihood ratio, concentration inequalities can be used to obtain insights into the generalization gap in terms of PAC bounds, which depend on some meaningful information-theoretic quantities. An analysis of the obtained bounds and a comparison with available results in the literature is also provided.
Palabras clave: ACCURACY , PAC BOUNDS , GENERALIZATION , LOG LOSS
Ver el registro completo
 
Archivos asociados
Tamaño: 597.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/233881
URL: https://academic.oup.com/imaiai/article-abstract/13/1/iaae002/7606139?redirected
DOI: http://dx.doi.org/10.1093/imaiai/iaae002
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; PACMAN: PAC-style bounds accounting for the Mismatch between Accuracy and Negative log-loss; Oxford University Press; Information and Inference; 13; 1; 3-2024; 1-29
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES