Mostrar el registro sencillo del ítem

dc.contributor.author
Vera, Matías Alejandro  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.author
Piantanida, Pablo  
dc.date.available
2024-04-23T14:22:28Z  
dc.date.issued
2024-03  
dc.identifier.citation
Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; PACMAN: PAC-style bounds accounting for the Mismatch between Accuracy and Negative log-loss; Oxford University Press; Information and Inference; 13; 1; 3-2024; 1-29  
dc.identifier.issn
2049-8772  
dc.identifier.uri
http://hdl.handle.net/11336/233881  
dc.description.abstract
The ultimate performance of machine learning algorithms for classification tasks is usually measured in terms of the empirical error probability (or accuracy) using a testing dataset. Whereas, these algorithms are optimized through the minimization of a typically different---more convenient---loss function using a training set. For classification tasks, this loss function is often the negative log-loss which yields the well-known cross-entropy risk that is typically better behaved (in terms of numerical behavior) than the zero-one loss. Conventional studies on the generalization error do not usually take into account the underlying mismatch between losses at training and testing phases. In this work, we introduce a theoretical analysis based on a pointwise PAC approach over the generalization gap considering the mismatch of testing on the accuracy metric and training on the negative log-loss, referred to as PACMAN. Building on the fact that the resulting mismatch can be written as a likelihood ratio, concentration inequalities can be used to obtain insights into the generalization gap in terms of PAC bounds, which depend on some meaningful information-theoretic quantities. An analysis of the obtained bounds and a comparison with available results in the literature is also provided.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACCURACY  
dc.subject
PAC BOUNDS  
dc.subject
GENERALIZATION  
dc.subject
LOG LOSS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
PACMAN: PAC-style bounds accounting for the Mismatch between Accuracy and Negative log-loss  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-15T15:05:15Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
1-29  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Vera, Matías Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.description.fil
Fil: Piantanida, Pablo. Universite Paris-Saclay ;  
dc.journal.title
Information and Inference  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imaiai/article-abstract/13/1/iaae002/7606139?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imaiai/iaae002