Mostrar el registro sencillo del ítem

dc.contributor.author
Much, Diego Gabriel  
dc.contributor.author
Alcaraz, Mirta Raquel  
dc.contributor.author
Camiña, José Manuel  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.contributor.author
Azcarate, Silvana Mariela  
dc.date.available
2024-04-16T13:47:55Z  
dc.date.issued
2024-03  
dc.identifier.citation
Much, Diego Gabriel; Alcaraz, Mirta Raquel; Camiña, José Manuel; Goicoechea, Hector Casimiro; Azcarate, Silvana Mariela; Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses; Elsevier; Talanta Open; 9; 3-2024; 100313-100321  
dc.identifier.issn
2666-8319  
dc.identifier.uri
http://hdl.handle.net/11336/233185  
dc.description.abstract
The high demand, high cost, and low regulations surrounding high-quality edible oils (HQEO) make them a target for fraudulent actions, particularly adulteration with refined oils. Consequently, the authentication of this kind of oil is of great interest. This work assessed the adulteration degree of five HQEOs: sesame, flaxseed, chia, rapeseed, and extra virgin olive oils, using different chemometric strategies to enhance the detection capability of the analytical methodology. Refined oils used as adulterants were evaluated at low concentrations (2-15 % v/v). Three multidimensional spectroscopic techniques (UV-Visible, near-infrared, and excitation-emission matrix fluorescence) were used, and two data fusion strategies (low- and mid-level) were evaluated. Principal component analysis was applied as an exploratory analysis tool to visualise and interpret the information contained in the dataset. For the adulterant quantification, partial least squares regression analysis was used to build the sensitive predictive models. The results revealed that chemical information enhancement leverages the ability to attain reduced prediction compared to unidimensional signals. In scenarios with low sample variability, conventional unidimensional spectroscopy (UVVisible or near-infrared) data was shown to be adequate to guarantee predictive efficiency. In contrast, when analysing predictive figures derived from models built using a dataset with high variability, e.g., brands, low-level data fusion approaches enhance predictive efficiency. The results showed that excitation-emission matrix-based or low-level data fusion approaches can be accurately implemented to guarantee the authenticity of edible oils even when a low content of adulterant oil is presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FOOD QUALITY  
dc.subject
HIGH QUALITY EDIBLE OILS  
dc.subject
ADULTERATION FRAUD  
dc.subject
SPECTROSCOPIC MEASUREMENT  
dc.subject
DATA FUSION STRATEGIES  
dc.subject
CHEMOMETRIC MODELLING  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-10T12:02:37Z  
dc.journal.volume
9  
dc.journal.pagination
100313-100321  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Much, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina. Gobierno de la Provincia de La Pampa. Ministerio Público. Agencia de Investigación Científica; Argentina  
dc.description.fil
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Química. Área Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Química. Área Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina  
dc.journal.title
Talanta Open  
dc.rights.embargoDate
2024-09-16  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666831924000274  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.talo.2024.100313