Mostrar el registro sencillo del ítem
dc.contributor.author
Much, Diego Gabriel
dc.contributor.author
Alcaraz, Mirta Raquel
dc.contributor.author
Camiña, José Manuel
dc.contributor.author
Goicoechea, Hector Casimiro
dc.contributor.author
Azcarate, Silvana Mariela
dc.date.available
2024-04-16T13:47:55Z
dc.date.issued
2024-03
dc.identifier.citation
Much, Diego Gabriel; Alcaraz, Mirta Raquel; Camiña, José Manuel; Goicoechea, Hector Casimiro; Azcarate, Silvana Mariela; Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses; Elsevier; Talanta Open; 9; 3-2024; 100313-100321
dc.identifier.issn
2666-8319
dc.identifier.uri
http://hdl.handle.net/11336/233185
dc.description.abstract
The high demand, high cost, and low regulations surrounding high-quality edible oils (HQEO) make them a target for fraudulent actions, particularly adulteration with refined oils. Consequently, the authentication of this kind of oil is of great interest. This work assessed the adulteration degree of five HQEOs: sesame, flaxseed, chia, rapeseed, and extra virgin olive oils, using different chemometric strategies to enhance the detection capability of the analytical methodology. Refined oils used as adulterants were evaluated at low concentrations (2-15 % v/v). Three multidimensional spectroscopic techniques (UV-Visible, near-infrared, and excitation-emission matrix fluorescence) were used, and two data fusion strategies (low- and mid-level) were evaluated. Principal component analysis was applied as an exploratory analysis tool to visualise and interpret the information contained in the dataset. For the adulterant quantification, partial least squares regression analysis was used to build the sensitive predictive models. The results revealed that chemical information enhancement leverages the ability to attain reduced prediction compared to unidimensional signals. In scenarios with low sample variability, conventional unidimensional spectroscopy (UVVisible or near-infrared) data was shown to be adequate to guarantee predictive efficiency. In contrast, when analysing predictive figures derived from models built using a dataset with high variability, e.g., brands, low-level data fusion approaches enhance predictive efficiency. The results showed that excitation-emission matrix-based or low-level data fusion approaches can be accurately implemented to guarantee the authenticity of edible oils even when a low content of adulterant oil is presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FOOD QUALITY
dc.subject
HIGH QUALITY EDIBLE OILS
dc.subject
ADULTERATION FRAUD
dc.subject
SPECTROSCOPIC MEASUREMENT
dc.subject
DATA FUSION STRATEGIES
dc.subject
CHEMOMETRIC MODELLING
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-10T12:02:37Z
dc.journal.volume
9
dc.journal.pagination
100313-100321
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Much, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina. Gobierno de la Provincia de La Pampa. Ministerio Público. Agencia de Investigación Científica; Argentina
dc.description.fil
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Química. Área Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Química. Área Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.journal.title
Talanta Open
dc.rights.embargoDate
2024-09-16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666831924000274
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.talo.2024.100313
Archivos asociados