Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses

Much, Diego GabrielIcon ; Alcaraz, Mirta RaquelIcon ; Camiña, José ManuelIcon ; Goicoechea, Hector CasimiroIcon ; Azcarate, Silvana MarielaIcon
Fecha de publicación: 03/2024
Editorial: Elsevier
Revista: Talanta Open
ISSN: 2666-8319
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica; Otras Ciencias Químicas

Resumen

The high demand, high cost, and low regulations surrounding high-quality edible oils (HQEO) make them a target for fraudulent actions, particularly adulteration with refined oils. Consequently, the authentication of this kind of oil is of great interest. This work assessed the adulteration degree of five HQEOs: sesame, flaxseed, chia, rapeseed, and extra virgin olive oils, using different chemometric strategies to enhance the detection capability of the analytical methodology. Refined oils used as adulterants were evaluated at low concentrations (2-15 % v/v). Three multidimensional spectroscopic techniques (UV-Visible, near-infrared, and excitation-emission matrix fluorescence) were used, and two data fusion strategies (low- and mid-level) were evaluated. Principal component analysis was applied as an exploratory analysis tool to visualise and interpret the information contained in the dataset. For the adulterant quantification, partial least squares regression analysis was used to build the sensitive predictive models. The results revealed that chemical information enhancement leverages the ability to attain reduced prediction compared to unidimensional signals. In scenarios with low sample variability, conventional unidimensional spectroscopy (UVVisible or near-infrared) data was shown to be adequate to guarantee predictive efficiency. In contrast, when analysing predictive figures derived from models built using a dataset with high variability, e.g., brands, low-level data fusion approaches enhance predictive efficiency. The results showed that excitation-emission matrix-based or low-level data fusion approaches can be accurately implemented to guarantee the authenticity of edible oils even when a low content of adulterant oil is presented.
Palabras clave: FOOD QUALITY , HIGH QUALITY EDIBLE OILS , ADULTERATION FRAUD , SPECTROSCOPIC MEASUREMENT , DATA FUSION STRATEGIES , CHEMOMETRIC MODELLING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.124Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/233185
URL: https://www.sciencedirect.com/science/article/pii/S2666831924000274
DOI: http://dx.doi.org/10.1016/j.talo.2024.100313
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INCITAP)
Articulos de INST.D/CS D/L/TIERRA Y AMBIENTALES D/L/PAMPA
Citación
Much, Diego Gabriel; Alcaraz, Mirta Raquel; Camiña, José Manuel; Goicoechea, Hector Casimiro; Azcarate, Silvana Mariela; Leveraging the performance of conventional spectroscopic techniques through data fusion approaches in high-quality edible oil adulteration analyses; Elsevier; Talanta Open; 9; 3-2024; 100313-100321
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES