Mostrar el registro sencillo del ítem

dc.contributor.author
Córdoba, Mariano  
dc.contributor.author
Bruno, Cecilia Ines  
dc.contributor.author
Costa, Jose Luis  
dc.contributor.author
Balzarini, Monica Graciela  
dc.date.available
2017-08-30T14:38:59Z  
dc.date.issued
2013-07  
dc.identifier.citation
Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-14  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/23303  
dc.description.abstract
Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Multispati-Pca  
dc.subject
Fuzzy K-Means  
dc.subject
Precision Agriculture  
dc.subject.classification
Otras Agricultura, Silvicultura y Pesca  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Subfield management class delineation using cluster analysis from spatial principal components of soil variables  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-08-30T13:53:53Z  
dc.journal.volume
97  
dc.journal.pagination
6-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina  
dc.description.fil
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computers and Eletronics in Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2013.05.009  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169913001282