Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Subfield management class delineation using cluster analysis from spatial principal components of soil variables

Córdoba, MarianoIcon ; Bruno, Cecilia InesIcon ; Costa, Jose Luis; Balzarini, Monica GracielaIcon
Fecha de publicación: 07/2013
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Agricultura, Silvicultura y Pesca

Resumen

Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance.
Palabras clave: Multispati-Pca , Fuzzy K-Means , Precision Agriculture
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 607.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/23303
DOI: http://dx.doi.org/10.1016/j.compag.2013.05.009
URL: http://www.sciencedirect.com/science/article/pii/S0168169913001282
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES