Artículo
Subfield management class delineation using cluster analysis from spatial principal components of soil variables
Fecha de publicación:
07/2013
Editorial:
Elsevier
Revista:
Computers and Eletronics in Agriculture
ISSN:
0168-1699
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance.
Palabras clave:
Multispati-Pca
,
Fuzzy K-Means
,
Precision Agriculture
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-14
Compartir
Altmétricas