Mostrar el registro sencillo del ítem
dc.contributor.author
Teverovsky Korsic, Sofia Andrea
dc.contributor.author
Notarnicola. Claudia
dc.contributor.author
Uriburu Quirno, Marcelo
dc.contributor.author
Cara Ramirez, Leandro Javier
dc.date.available
2024-04-15T15:44:40Z
dc.date.issued
2023-01
dc.identifier.citation
Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier; Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina; Elsevier; Environmental Challenges; 10; 1-2023; 1-9
dc.identifier.issn
2667-0100
dc.identifier.uri
http://hdl.handle.net/11336/233024
dc.description.abstract
In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Support Vector Regression
dc.subject
Runoff Prediction
dc.subject
Remote Sensing
dc.subject
Machine learning techniques
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-13T15:09:52Z
dc.journal.volume
10
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Teverovsky Korsic, Sofia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Universidad Nacional de Luján; Argentina
dc.description.fil
Fil: Notarnicola. Claudia. European Academy of Bozen; Italia
dc.description.fil
Fil: Uriburu Quirno, Marcelo. Comision Nacional de Actividades Espaciales; Argentina
dc.description.fil
Fil: Cara Ramirez, Leandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.journal.title
Environmental Challenges
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667010023000033
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.envc.2023.100680
Archivos asociados