Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina

Teverovsky Korsic, Sofia AndreaIcon ; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro JavierIcon
Fecha de publicación: 01/2023
Editorial: Elsevier
Revista: Environmental Challenges
ISSN: 2667-0100
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region.
Palabras clave: Support Vector Regression , Runoff Prediction , Remote Sensing , Machine learning techniques
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.638Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/233024
URL: https://www.sciencedirect.com/science/article/pii/S2667010023000033
DOI: https://doi.org/10.1016/j.envc.2023.100680
Colecciones
Articulos(IANIGLA)
Articulos de INST. ARG. DE NIVOLOGIA, GLACIOLOGIA Y CS. AMBIENT
Citación
Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier; Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina; Elsevier; Environmental Challenges; 10; 1-2023; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES