Mostrar el registro sencillo del ítem
dc.contributor.author
Montes Rojas, Gabriel Victorio
dc.contributor.author
Mena, Andrés Sebastián
dc.date.available
2024-04-15T12:11:15Z
dc.date.issued
2021-02
dc.identifier.citation
Montes Rojas, Gabriel Victorio; Mena, Andrés Sebastián; Density estimation using bootstrap quantile variance and quantile-mean covariance; Taylor & Francis; Communications in Statistics - Simulation and Computation; 52; 4; 2-2021; 1450-1462
dc.identifier.issn
1532-4141
dc.identifier.uri
http://hdl.handle.net/11336/232962
dc.description.abstract
We evaluate two density estimators based on the quantile variance and the quantile-mean covariance estimated by bootstrap. We review previous developments on density estimation related to quantiles. Monte Carlo simulations for different data generating processes, sample sizes, and other parameters show that the estimators perform well in comparison to the benchmark non-parametric kernel density estimator. Some of the explored smoothing techniques present lower bias and mean integrated squared errors, which indicates that the proposed estimator is a promising strategy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Density Estimation
dc.subject
Quantile Variance
dc.subject
Queantile-Mean Covariance
dc.subject
Bootstrap
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Density estimation using bootstrap quantile variance and quantile-mean covariance
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-12T12:39:08Z
dc.journal.volume
52
dc.journal.number
4
dc.journal.pagination
1450-1462
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
dc.description.fil
Fil: Mena, Andrés Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Estudios Sociales. Universidad Nacional de Tucumán. Instituto Superior de Estudios Sociales; Argentina
dc.journal.title
Communications in Statistics - Simulation and Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03610918.2021.1884717
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/03610918.2021.1884717
Archivos asociados