Artículo
Density estimation using bootstrap quantile variance and quantile-mean covariance
Fecha de publicación:
02/2021
Editorial:
Taylor & Francis
Revista:
Communications in Statistics - Simulation and Computation
ISSN:
1532-4141
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We evaluate two density estimators based on the quantile variance and the quantile-mean covariance estimated by bootstrap. We review previous developments on density estimation related to quantiles. Monte Carlo simulations for different data generating processes, sample sizes, and other parameters show that the estimators perform well in comparison to the benchmark non-parametric kernel density estimator. Some of the explored smoothing techniques present lower bias and mean integrated squared errors, which indicates that the proposed estimator is a promising strategy.
Palabras clave:
Density Estimation
,
Quantile Variance
,
Queantile-Mean Covariance
,
Bootstrap
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos(ISES)
Articulos de INST.SUPERIOR DE ESTUDIOS SOCIALES
Articulos de INST.SUPERIOR DE ESTUDIOS SOCIALES
Citación
Montes Rojas, Gabriel Victorio; Mena, Andrés Sebastián; Density estimation using bootstrap quantile variance and quantile-mean covariance; Taylor & Francis; Communications in Statistics - Simulation and Computation; 52; 4; 2-2021; 1450-1462
Compartir
Altmétricas