Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
Kinyon, Michael  
dc.contributor.author
Sankappanavar, Hanamantagouda P.  
dc.date.available
2024-04-12T14:26:49Z  
dc.date.issued
2023-12-18  
dc.identifier.citation
Cornejo, Juan Manuel; Kinyon, Michael; Sankappanavar, Hanamantagouda P.; Regular Double p-Algebras: A converse to a Katrinak Theorem, and Applications; Versita; Mathematica Slovaca; 73; 6; 18-12-2023; 1373-1388  
dc.identifier.issn
0139-9918  
dc.identifier.uri
http://hdl.handle.net/11336/232893  
dc.description.abstract
In 1973, Katri{n}´{a}k proved that regular double $p$-algebras can be regarded as (regular) double Heyting algebras by ingeniously constructing binary terms for the Heying implication and its dual in terms of pseudocomplement and its dual.We prove a converse to the Katri{n}´{a}k´s theorem, in the sense that in the variety $mathbb{RDPCH}$ of regular dually pseudocomplemented Heyting algebras, $o$ satisfies the Katrinak´s formula. As applications of this result together with the above-mentioned Katri{n}´{a}k´s theorem, we show that the varieties $mathcal{RDBLP}$, $mathcal{RDPCH}$ and $mathcal{RDBLH}$ of regular double p-algebras, regular dually pseudocomplemented Heyting algebras and regular double Heyting algebras, respectively, are term-equivalent to each other and that the varieties $mathcal{RDMP}$ and $mathcal{RDMH}$ of regular pseudocomlemented De Morgan algebras and regular Heyting algebras, respectively, are also term-equivalent to each other. From these results and recent results of cite{AdSaVc19} and cite{ AdSaVc20}, we deduce that the lattices of varieties $mathbb{RDPCH}$, $mathbb{RDBLH}$ and $mathbb{RDMH}$, respectively, of regular dually pseudocomplemented Heyting algebras, regular double Heyting algebras, regular De Morgan Heyting algebras all have cardinality $2^{aleph_0}$. These results, when combined with a result of cite{CoSa20}, in turn, lead us to define a new algebraizable logic, namely $mathcal{RDBLP}$, haviing $mathbb{RDBLP}$,as its equivalent algebraic semantics. It is also deduced that the lattices of extensions of logics $mathcal{RDBLP}$, $mathcal{RDPCH}$, $mathcal{RDBLH}$ and $mathcal{RDMH}$ have cardinality $2^{aleph_0}$.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Versita  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
REGULAR DOUBLE p-ALGEBRAS  
dc.subject
KATRINAK THEOREM  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Regular Double p-Algebras: A converse to a Katrinak Theorem, and Applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-08T14:14:36Z  
dc.journal.volume
73  
dc.journal.number
6  
dc.journal.pagination
1373-1388  
dc.journal.pais
Polonia  
dc.journal.ciudad
Varsovia  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Kinyon, Michael. University Of Denver.; Estados Unidos  
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. Department Of Mathematics. State University Of New Yor; Estados Unidos  
dc.journal.title
Mathematica Slovaca  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ms-2023-0099  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2210.10387