Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Regular Double p-Algebras: A converse to a Katrinak Theorem, and Applications

Cornejo, Juan ManuelIcon ; Kinyon, Michael; Sankappanavar, Hanamantagouda P.
Fecha de publicación: 18/12/2023
Editorial: Versita
Revista: Mathematica Slovaca
ISSN: 0139-9918
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In 1973, Katri{n}´{a}k proved that regular double $p$-algebras can be regarded as (regular) double Heyting algebras by ingeniously constructing binary terms for the Heying implication and its dual in terms of pseudocomplement and its dual.We prove a converse to the Katri{n}´{a}k´s theorem, in the sense that in the variety $mathbb{RDPCH}$ of regular dually pseudocomplemented Heyting algebras, $o$ satisfies the Katrinak´s formula. As applications of this result together with the above-mentioned Katri{n}´{a}k´s theorem, we show that the varieties $mathcal{RDBLP}$, $mathcal{RDPCH}$ and $mathcal{RDBLH}$ of regular double p-algebras, regular dually pseudocomplemented Heyting algebras and regular double Heyting algebras, respectively, are term-equivalent to each other and that the varieties $mathcal{RDMP}$ and $mathcal{RDMH}$ of regular pseudocomlemented De Morgan algebras and regular Heyting algebras, respectively, are also term-equivalent to each other. From these results and recent results of cite{AdSaVc19} and cite{ AdSaVc20}, we deduce that the lattices of varieties $mathbb{RDPCH}$, $mathbb{RDBLH}$ and $mathbb{RDMH}$, respectively, of regular dually pseudocomplemented Heyting algebras, regular double Heyting algebras, regular De Morgan Heyting algebras all have cardinality $2^{aleph_0}$. These results, when combined with a result of cite{CoSa20}, in turn, lead us to define a new algebraizable logic, namely $mathcal{RDBLP}$, haviing $mathbb{RDBLP}$,as its equivalent algebraic semantics. It is also deduced that the lattices of extensions of logics $mathcal{RDBLP}$, $mathcal{RDPCH}$, $mathcal{RDBLH}$ and $mathcal{RDMH}$ have cardinality $2^{aleph_0}$.
Palabras clave: REGULAR DOUBLE p-ALGEBRAS , KATRINAK THEOREM
Ver el registro completo
 
Archivos asociados
Tamaño: 469.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/232893
DOI: http://dx.doi.org/10.1515/ms-2023-0099
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Kinyon, Michael; Sankappanavar, Hanamantagouda P.; Regular Double p-Algebras: A converse to a Katrinak Theorem, and Applications; Versita; Mathematica Slovaca; 73; 6; 18-12-2023; 1373-1388
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES