Mostrar el registro sencillo del ítem

dc.contributor.author
Alche, Miguel Nehmad  
dc.contributor.author
Acevedo, Daniel Germán  
dc.contributor.author
Mejail, Marta Estela  
dc.contributor.other
Sappa, Angel D.  
dc.date.available
2024-04-08T13:58:52Z  
dc.date.issued
2022  
dc.identifier.citation
Alche, Miguel Nehmad; Acevedo, Daniel Germán; Mejail, Marta Estela; Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution; Springer; 224; 2022; 149-164  
dc.identifier.isbn
978-3-031-06306-0  
dc.identifier.uri
http://hdl.handle.net/11336/232374  
dc.description.abstract
The use of artificial intelligence in healthcare systems has helped doctors to automate many tasks and has avoided unnecessary patient hospitalizations. Mobile devices have grown in computing capacity and enhanced image acquisition capabilities, which enable the implementation of more powerful outpatient services. In this chapter we propose a lightweight solution to the diagnose of skin lesions. Specifically, we focus on the melanoma classification whose early diagnosis is crucial to increase the chances of its cure. Computer vision algorithms can be used to analyze dermoscopic images of skin lesions and decide if these correspond to benign or malignant tumors. We propose a deep learning solution by means of the adaptation of the attention residual learning designed for ResNets to the EfficientNet networks which are suitable for mobile devices. A comparison is made of this mechanism with other attention mechanisms that these networks already have incorporated. We maintain the efficiency of these networks since only one extra parameter per stage needs to be trained. We also test several pre-processing methods that perform color corrections of skin images and sharpens its details improving the final performance. The proposed methodology can be extended to the early detection and recognition of other forms of skin lesions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IMAGENES DERMASCOPICAS  
dc.subject
DEEP LEARNING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-04-08T12:58:25Z  
dc.journal.volume
224  
dc.journal.pagination
149-164  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Alche, Miguel Nehmad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Acevedo, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-06307-7_8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-031-06307-7_8  
dc.conicet.paginas
203  
dc.source.titulo
ICT Applications for Smart Cities