Mostrar el registro sencillo del ítem
dc.contributor.author
Alche, Miguel Nehmad
dc.contributor.author
Acevedo, Daniel Germán
dc.contributor.author
Mejail, Marta Estela
dc.contributor.other
Sappa, Angel D.
dc.date.available
2024-04-08T13:58:52Z
dc.date.issued
2022
dc.identifier.citation
Alche, Miguel Nehmad; Acevedo, Daniel Germán; Mejail, Marta Estela; Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution; Springer; 224; 2022; 149-164
dc.identifier.isbn
978-3-031-06306-0
dc.identifier.uri
http://hdl.handle.net/11336/232374
dc.description.abstract
The use of artificial intelligence in healthcare systems has helped doctors to automate many tasks and has avoided unnecessary patient hospitalizations. Mobile devices have grown in computing capacity and enhanced image acquisition capabilities, which enable the implementation of more powerful outpatient services. In this chapter we propose a lightweight solution to the diagnose of skin lesions. Specifically, we focus on the melanoma classification whose early diagnosis is crucial to increase the chances of its cure. Computer vision algorithms can be used to analyze dermoscopic images of skin lesions and decide if these correspond to benign or malignant tumors. We propose a deep learning solution by means of the adaptation of the attention residual learning designed for ResNets to the EfficientNet networks which are suitable for mobile devices. A comparison is made of this mechanism with other attention mechanisms that these networks already have incorporated. We maintain the efficiency of these networks since only one extra parameter per stage needs to be trained. We also test several pre-processing methods that perform color corrections of skin images and sharpens its details improving the final performance. The proposed methodology can be extended to the early detection and recognition of other forms of skin lesions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IMAGENES DERMASCOPICAS
dc.subject
DEEP LEARNING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-04-08T12:58:25Z
dc.journal.volume
224
dc.journal.pagination
149-164
dc.journal.pais
Suiza
dc.description.fil
Fil: Alche, Miguel Nehmad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: Acevedo, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-06307-7_8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-031-06307-7_8
dc.conicet.paginas
203
dc.source.titulo
ICT Applications for Smart Cities
Archivos asociados