Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution

Título del libro: ICT Applications for Smart Cities

Alche, Miguel Nehmad; Acevedo, Daniel GermánIcon ; Mejail, Marta Estela
Otros responsables: Sappa, Angel D.
Fecha de publicación: 2022
Editorial: Springer
ISBN: 978-3-031-06306-0
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

The use of artificial intelligence in healthcare systems has helped doctors to automate many tasks and has avoided unnecessary patient hospitalizations. Mobile devices have grown in computing capacity and enhanced image acquisition capabilities, which enable the implementation of more powerful outpatient services. In this chapter we propose a lightweight solution to the diagnose of skin lesions. Specifically, we focus on the melanoma classification whose early diagnosis is crucial to increase the chances of its cure. Computer vision algorithms can be used to analyze dermoscopic images of skin lesions and decide if these correspond to benign or malignant tumors. We propose a deep learning solution by means of the adaptation of the attention residual learning designed for ResNets to the EfficientNet networks which are suitable for mobile devices. A comparison is made of this mechanism with other attention mechanisms that these networks already have incorporated. We maintain the efficiency of these networks since only one extra parameter per stage needs to be trained. We also test several pre-processing methods that perform color corrections of skin images and sharpens its details improving the final performance. The proposed methodology can be extended to the early detection and recognition of other forms of skin lesions.
Palabras clave: IMAGENES DERMASCOPICAS , DEEP LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 416.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/232374
URL: https://link.springer.com/chapter/10.1007/978-3-031-06307-7_8
DOI: http://dx.doi.org/10.1007/978-3-031-06307-7_8
Colecciones
Capítulos de libros(OCA CIUDAD UNIVERSITARIA)
Capítulos de libros de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Alche, Miguel Nehmad; Acevedo, Daniel Germán; Mejail, Marta Estela; Early Computer-Aided Diagnose in Medical Environments: A Deep Learning Based Lightweight Solution; Springer; 224; 2022; 149-164
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES