Mostrar el registro sencillo del ítem

dc.contributor.author
Rossini, Luca  
dc.contributor.author
Bruzzone, Octavio Augusto  
dc.contributor.author
Speranza, Stefano  
dc.contributor.author
Delfino, Ines  
dc.date.available
2024-04-05T13:02:45Z  
dc.date.issued
2023-07  
dc.identifier.citation
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/232108  
dc.description.abstract
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Parameter estimation  
dc.subject
Field monitoring  
dc.subject
Least square method  
dc.subject
Metropolis hasting algorithm  
dc.subject
Insect pest populations  
dc.subject.classification
Otras Agricultura, Silvicultura y Pesca  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-05T12:27:01Z  
dc.journal.volume
77  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia  
dc.description.fil
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia  
dc.description.fil
Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2023.102232