Mostrar el registro sencillo del ítem
dc.contributor.author
Rossini, Luca
dc.contributor.author
Bruzzone, Octavio Augusto
dc.contributor.author
Speranza, Stefano
dc.contributor.author
Delfino, Ines
dc.date.available
2024-04-05T13:02:45Z
dc.date.issued
2023-07
dc.identifier.citation
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/232108
dc.description.abstract
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Parameter estimation
dc.subject
Field monitoring
dc.subject
Least square method
dc.subject
Metropolis hasting algorithm
dc.subject
Insect pest populations
dc.subject.classification
Otras Agricultura, Silvicultura y Pesca
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-05T12:27:01Z
dc.journal.volume
77
dc.journal.pagination
1-12
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia
dc.description.fil
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia
dc.description.fil
Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2023.102232
Archivos asociados