Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods

Rossini, Luca; Bruzzone, Octavio AugustoIcon ; Speranza, Stefano; Delfino, Ines
Fecha de publicación: 07/2023
Editorial: Elsevier Science
Revista: Ecological Informatics
ISSN: 1574-9541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Agricultura, Silvicultura y Pesca

Resumen

Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
Palabras clave: Parameter estimation , Field monitoring , Least square method , Metropolis hasting algorithm , Insect pest populations
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.642Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/232108
URL: https://www.sciencedirect.com/science/article/pii/S1574954123002613
DOI: http://dx.doi.org/10.1016/j.ecoinf.2023.102232
Colecciones
Articulos (IFAB)
Articulos de INSTITUTO DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS BARILOCHE
Citación
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES