Mostrar el registro sencillo del ítem
dc.contributor.author
Angelini, Julia
dc.contributor.author
Faviere, Gabriela Soledad
dc.contributor.author
Bortolotto, Eugenia Belén
dc.contributor.author
Cervigni, Gerardo Domingo Lucio
dc.contributor.author
Quaglino, Marta Beatriz
dc.date.available
2024-04-04T12:54:54Z
dc.date.issued
2023-02
dc.identifier.citation
Angelini, Julia; Faviere, Gabriela Soledad; Bortolotto, Eugenia Belén; Cervigni, Gerardo Domingo Lucio; Quaglino, Marta Beatriz; Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model; Taylor & Francis; Journal of Crop Improvement; 37; 1; 2-2023; 74-98
dc.identifier.issn
1542-7528
dc.identifier.uri
http://hdl.handle.net/11336/231906
dc.description.abstract
Site regression model (SREG) is utilized by plant breeders for the analysis of multi-environment trials (MET) to examine the relationships among test environments and genotypes (G) and genotype-by-environment interaction (GE). In its regular form, singular-value decomposition (SVD) is applied on residual matrix from one-way analysis of variance (ANOVA) to partition G plus GE effects. However, ANOVA and SVD are sensitive to atypical observations, which are common in MET. To overcome this problem, three robust models are proposed to obtain valid results even in the presence of outliers. Their efficacy was evaluated by simulation and compared with standard SREG. Different scenarios were considered to identify the appropriate strategies to deal with outliers in real situations. Two real datasets are also presented to highlight the usefulness of the proposed methods in agricultural data. Our results indicate that the use of the proposed alternatives enables to effectively analyze MET data in the presence of outliers and maintain good performance without them as well.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MULTIPLICATIVE MODELS
dc.subject
MULTIVARIATE METHODS
dc.subject
OUTLIERS
dc.subject
ROBUST APPROACH
dc.subject
SITE REGRESSION
dc.subject.classification
Otros Tópicos Biológicos
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-04T12:04:26Z
dc.identifier.eissn
1542-7536
dc.journal.volume
37
dc.journal.number
1
dc.journal.pagination
74-98
dc.journal.pais
Irlanda
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Quaglino, Marta Beatriz. Universidad Nacional de Rosario; Argentina
dc.journal.title
Journal of Crop Improvement
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/15427528.2022.2051217
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15427528.2022.2051217
Archivos asociados