Mostrar el registro sencillo del ítem

dc.contributor.author
Angelini, Julia  
dc.contributor.author
Faviere, Gabriela Soledad  
dc.contributor.author
Bortolotto, Eugenia Belén  
dc.contributor.author
Cervigni, Gerardo Domingo Lucio  
dc.contributor.author
Quaglino, Marta Beatriz  
dc.date.available
2024-04-04T12:54:54Z  
dc.date.issued
2023-02  
dc.identifier.citation
Angelini, Julia; Faviere, Gabriela Soledad; Bortolotto, Eugenia Belén; Cervigni, Gerardo Domingo Lucio; Quaglino, Marta Beatriz; Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model; Taylor & Francis; Journal of Crop Improvement; 37; 1; 2-2023; 74-98  
dc.identifier.issn
1542-7528  
dc.identifier.uri
http://hdl.handle.net/11336/231906  
dc.description.abstract
Site regression model (SREG) is utilized by plant breeders for the analysis of multi-environment trials (MET) to examine the relationships among test environments and genotypes (G) and genotype-by-environment interaction (GE). In its regular form, singular-value decomposition (SVD) is applied on residual matrix from one-way analysis of variance (ANOVA) to partition G plus GE effects. However, ANOVA and SVD are sensitive to atypical observations, which are common in MET. To overcome this problem, three robust models are proposed to obtain valid results even in the presence of outliers. Their efficacy was evaluated by simulation and compared with standard SREG. Different scenarios were considered to identify the appropriate strategies to deal with outliers in real situations. Two real datasets are also presented to highlight the usefulness of the proposed methods in agricultural data. Our results indicate that the use of the proposed alternatives enables to effectively analyze MET data in the presence of outliers and maintain good performance without them as well.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTIPLICATIVE MODELS  
dc.subject
MULTIVARIATE METHODS  
dc.subject
OUTLIERS  
dc.subject
ROBUST APPROACH  
dc.subject
SITE REGRESSION  
dc.subject.classification
Otros Tópicos Biológicos  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-04T12:04:26Z  
dc.identifier.eissn
1542-7536  
dc.journal.volume
37  
dc.journal.number
1  
dc.journal.pagination
74-98  
dc.journal.pais
Irlanda  
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Quaglino, Marta Beatriz. Universidad Nacional de Rosario; Argentina  
dc.journal.title
Journal of Crop Improvement  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/15427528.2022.2051217  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15427528.2022.2051217