Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model

Angelini, JuliaIcon ; Faviere, Gabriela SoledadIcon ; Bortolotto, Eugenia BelénIcon ; Cervigni, Gerardo Domingo LucioIcon ; Quaglino, Marta Beatriz
Fecha de publicación: 02/2023
Editorial: Taylor & Francis
Revista: Journal of Crop Improvement
ISSN: 1542-7528
e-ISSN: 1542-7536
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otros Tópicos Biológicos

Resumen

Site regression model (SREG) is utilized by plant breeders for the analysis of multi-environment trials (MET) to examine the relationships among test environments and genotypes (G) and genotype-by-environment interaction (GE). In its regular form, singular-value decomposition (SVD) is applied on residual matrix from one-way analysis of variance (ANOVA) to partition G plus GE effects. However, ANOVA and SVD are sensitive to atypical observations, which are common in MET. To overcome this problem, three robust models are proposed to obtain valid results even in the presence of outliers. Their efficacy was evaluated by simulation and compared with standard SREG. Different scenarios were considered to identify the appropriate strategies to deal with outliers in real situations. Two real datasets are also presented to highlight the usefulness of the proposed methods in agricultural data. Our results indicate that the use of the proposed alternatives enables to effectively analyze MET data in the presence of outliers and maintain good performance without them as well.
Palabras clave: MULTIPLICATIVE MODELS , MULTIVARIATE METHODS , OUTLIERS , ROBUST APPROACH , SITE REGRESSION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.586Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/231906
URL: https://www.tandfonline.com/doi/full/10.1080/15427528.2022.2051217
DOI: http://dx.doi.org/10.1080/15427528.2022.2051217
Colecciones
Articulos(CEFOBI)
Articulos de CENTRO DE EST.FOTOSINTETICOS Y BIOQUIMICOS (I)
Citación
Angelini, Julia; Faviere, Gabriela Soledad; Bortolotto, Eugenia Belén; Cervigni, Gerardo Domingo Lucio; Quaglino, Marta Beatriz; Handling outliers in multi-environment trial data analysis: in the direction of robust SREG model; Taylor & Francis; Journal of Crop Improvement; 37; 1; 2-2023; 74-98
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES