Artículo
Quantization-based simulation of spiking neurons: theoretical properties and performance analysis
Bergonzi, Mariana
; Fernandez, Joaquin
; Castro, Rodrigo Daniel
; Muzy, Alexandre; Kofman, Ernesto Javier
Fecha de publicación:
11/2023
Editorial:
Taylor & Francis
Revista:
Journal of Simulation
ISSN:
1747-7778
e-ISSN:
1747-7786
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we present an exhaustive analysis of the use of Quantized State Systems (QSS) algorithms for the discrete event simulation of Leaky Integrate and Fire models of spiking neurons. Making use of some properties of these algorithms, we first derive theoretical error bounds for the sub-threshold dynamics as well as estimates of the computational costs as a function of the accuracy settings. Then, we corroborate those results on different simulation experiments, where we also study how these algorithms scale with the size of the network and its connectivity. The results obtained show that the QSS algorithms, without any type of optimisation or specialisation, obtain accurate results with low computational costs even in large networks with a high level of connectivity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bergonzi, Mariana; Fernandez, Joaquin; Castro, Rodrigo Daniel; Muzy, Alexandre; Kofman, Ernesto Javier; Quantization-based simulation of spiking neurons: theoretical properties and performance analysis; Taylor & Francis; Journal of Simulation; 11-2023; 1-25
Compartir
Altmétricas