Mostrar el registro sencillo del ítem
dc.contributor.author
Basu, Saugata
dc.contributor.author
Perrucci, Daniel Roberto
dc.date.available
2024-03-25T12:54:56Z
dc.date.issued
2023-05
dc.identifier.citation
Basu, Saugata; Perrucci, Daniel Roberto; Topology of real multi-affine hypersurfaces and a homological stability property; Academic Press Inc Elsevier Science; Advances in Mathematics; 420; 5-2023; 1-33
dc.identifier.issn
0001-8708
dc.identifier.uri
http://hdl.handle.net/11336/231423
dc.description.abstract
Let R be a real closed field. We prove that the number of semi-algebraically connected components of a real hypersurface in Rn defined by a multi-affine polynomial of degree d is bounded by 2d−1. This bound is sharp and is independent of n (as opposed to the classical bound of d(2d−1)n−1 on the Betti numbers of hypersurfaces defined by arbitrary polynomials of degree d in Rn due to Petrovskiĭ and Oleĭnik, Thom and Milnor). Moreover, we show there exists c>1, such that given a sequence (Bn)n>0 where Bn is a closed ball in Rn of positive radius, there exist hypersurfaces (Vn⊂Rn)n>0 defined by symmetric multi-affine polynomials of degree 4, such that ∑i⩽5bi(Vn∩Bn)>cn, where bi(⋅) denotes the i-th Betti number with rational coefficients. Finally, as an application of the main result of the paper we verify a representational stability conjecture due to Basu and Riener on the cohomology modules of symmetric real algebraic sets for a new and much larger class of symmetric real algebraic sets than known before.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BETTI NUMBERS
dc.subject
MULTI-AFFINE
dc.subject
REPRESENTATIONAL STABILITY
dc.subject
SPECHT MODULES
dc.subject
SYMMETRIC ALGEBRAIC SETS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Topology of real multi-affine hypersurfaces and a homological stability property
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-25T12:36:34Z
dc.journal.volume
420
dc.journal.pagination
1-33
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Basu, Saugata. Purdue University; Estados Unidos
dc.description.fil
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Advances in Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2023.108982
Archivos asociados