Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Topology of real multi-affine hypersurfaces and a homological stability property

Basu, Saugata; Perrucci, Daniel RobertoIcon
Fecha de publicación: 05/2023
Editorial: Academic Press Inc Elsevier Science
Revista: Advances in Mathematics
ISSN: 0001-8708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let R be a real closed field. We prove that the number of semi-algebraically connected components of a real hypersurface in Rn defined by a multi-affine polynomial of degree d is bounded by 2d−1. This bound is sharp and is independent of n (as opposed to the classical bound of d(2d−1)n−1 on the Betti numbers of hypersurfaces defined by arbitrary polynomials of degree d in Rn due to Petrovskiĭ and Oleĭnik, Thom and Milnor). Moreover, we show there exists c>1, such that given a sequence (Bn)n>0 where Bn is a closed ball in Rn of positive radius, there exist hypersurfaces (Vn⊂Rn)n>0 defined by symmetric multi-affine polynomials of degree 4, such that ∑i⩽5bi(Vn∩Bn)>cn, where bi(⋅) denotes the i-th Betti number with rational coefficients. Finally, as an application of the main result of the paper we verify a representational stability conjecture due to Basu and Riener on the cohomology modules of symmetric real algebraic sets for a new and much larger class of symmetric real algebraic sets than known before.
Palabras clave: BETTI NUMBERS , MULTI-AFFINE , REPRESENTATIONAL STABILITY , SPECHT MODULES , SYMMETRIC ALGEBRAIC SETS
Ver el registro completo
 
Archivos asociados
Tamaño: 542.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/231423
DOI: http://dx.doi.org/10.1016/j.aim.2023.108982
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Basu, Saugata; Perrucci, Daniel Roberto; Topology of real multi-affine hypersurfaces and a homological stability property; Academic Press Inc Elsevier Science; Advances in Mathematics; 420; 5-2023; 1-33
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES