Mostrar el registro sencillo del ítem

dc.contributor.author
de Borbón, María Laura  
dc.contributor.author
Ochoa, Pablo Daniel  
dc.date.available
2024-03-21T12:44:18Z  
dc.date.issued
2024-02  
dc.identifier.citation
de Borbón, María Laura; Ochoa, Pablo Daniel; Uniformly elliptic equations with concave growth in the gradient and measures; House Book Science-casa Cartii Stiinta; Fixed Point Theory; 25; 1; 2-2024; 43-60  
dc.identifier.issn
1583-5022  
dc.identifier.uri
http://hdl.handle.net/11336/231140  
dc.description.abstract
We deal with quasilinear elliptic problems with measure data:Lw = H(x, w, ∇w) + µ in Ωw = 0 on ∂Ω,(0.1)where Lw := −div(A(x)∇w) with A = A(x) a bounded, coercive, and symmetric matrix field, theHamiltonian H has at most q-growth in the gradient for 0 < q < 1, and µ is any Radon measure.We employ the compactness of the Green operator associated to L from the space of measures toW1,p0(Ω) for all p ∈ [1, N/(N − 1)) together with fixed point arguments to solve problem (0.1) forany measure µ. Moreover, we provide explicit estimates of the solution in terms of the data. As anapplication, stability results are given. We also give conditions for the existence of W1,20-solutionsthrough the classic theory of monotone and coercive operators. In any case, we do not impose anysize restriction on µ and any sign condition on H.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
House Book Science-casa Cartii Stiinta  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Quasilinear elliptic equations  
dc.subject
Fixed point  
dc.subject
Green’s functions  
dc.subject
Weak solutions  
dc.subject
Uniqueness  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Uniformly elliptic equations with concave growth in the gradient and measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-19T14:23:47Z  
dc.identifier.eissn
2066-9208  
dc.journal.volume
25  
dc.journal.number
1  
dc.journal.pagination
43-60  
dc.journal.pais
Rumania  
dc.description.fil
Fil: de Borbón, María Laura. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Ochoa, Pablo Daniel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Fixed Point Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.math.ubbcluj.ro/~nodeacj/volumes/2024-No1/241-bor-och-0176-final-final.php  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.24193/fpt-ro.2025.1.04