Mostrar el registro sencillo del ítem
dc.contributor.author
de Borbón, María Laura
dc.contributor.author
Ochoa, Pablo Daniel
dc.date.available
2024-03-21T12:44:18Z
dc.date.issued
2024-02
dc.identifier.citation
de Borbón, María Laura; Ochoa, Pablo Daniel; Uniformly elliptic equations with concave growth in the gradient and measures; House Book Science-casa Cartii Stiinta; Fixed Point Theory; 25; 1; 2-2024; 43-60
dc.identifier.issn
1583-5022
dc.identifier.uri
http://hdl.handle.net/11336/231140
dc.description.abstract
We deal with quasilinear elliptic problems with measure data:Lw = H(x, w, ∇w) + µ in Ωw = 0 on ∂Ω,(0.1)where Lw := −div(A(x)∇w) with A = A(x) a bounded, coercive, and symmetric matrix field, theHamiltonian H has at most q-growth in the gradient for 0 < q < 1, and µ is any Radon measure.We employ the compactness of the Green operator associated to L from the space of measures toW1,p0(Ω) for all p ∈ [1, N/(N − 1)) together with fixed point arguments to solve problem (0.1) forany measure µ. Moreover, we provide explicit estimates of the solution in terms of the data. As anapplication, stability results are given. We also give conditions for the existence of W1,20-solutionsthrough the classic theory of monotone and coercive operators. In any case, we do not impose anysize restriction on µ and any sign condition on H.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
House Book Science-casa Cartii Stiinta
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Quasilinear elliptic equations
dc.subject
Fixed point
dc.subject
Green’s functions
dc.subject
Weak solutions
dc.subject
Uniqueness
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Uniformly elliptic equations with concave growth in the gradient and measures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-19T14:23:47Z
dc.identifier.eissn
2066-9208
dc.journal.volume
25
dc.journal.number
1
dc.journal.pagination
43-60
dc.journal.pais
Rumania
dc.description.fil
Fil: de Borbón, María Laura. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Ochoa, Pablo Daniel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
Fixed Point Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.math.ubbcluj.ro/~nodeacj/volumes/2024-No1/241-bor-och-0176-final-final.php
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.24193/fpt-ro.2025.1.04
Archivos asociados