Artículo
Uniformly elliptic equations with concave growth in the gradient and measures
Fecha de publicación:
02/2024
Editorial:
House Book Science-casa Cartii Stiinta
Revista:
Fixed Point Theory
ISSN:
1583-5022
e-ISSN:
2066-9208
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We deal with quasilinear elliptic problems with measure data:Lw = H(x, w, ∇w) + µ in Ωw = 0 on ∂Ω,(0.1)where Lw := −div(A(x)∇w) with A = A(x) a bounded, coercive, and symmetric matrix field, theHamiltonian H has at most q-growth in the gradient for 0 < q < 1, and µ is any Radon measure.We employ the compactness of the Green operator associated to L from the space of measures toW1,p0(Ω) for all p ∈ [1, N/(N − 1)) together with fixed point arguments to solve problem (0.1) forany measure µ. Moreover, we provide explicit estimates of the solution in terms of the data. As anapplication, stability results are given. We also give conditions for the existence of W1,20-solutionsthrough the classic theory of monotone and coercive operators. In any case, we do not impose anysize restriction on µ and any sign condition on H.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
de Borbón, María Laura; Ochoa, Pablo Daniel; Uniformly elliptic equations with concave growth in the gradient and measures; House Book Science-casa Cartii Stiinta; Fixed Point Theory; 25; 1; 2-2024; 43-60
Compartir
Altmétricas