Mostrar el registro sencillo del ítem
dc.contributor.author
Cravero, Fiorella

dc.contributor.author
Ponzoni, Ignacio

dc.contributor.author
Diaz, Monica Fatima

dc.date.available
2024-03-19T12:17:12Z
dc.date.issued
2023-11-07
dc.identifier.citation
Cravero, Fiorella; Ponzoni, Ignacio; Diaz, Monica Fatima; Can we gain insight about the ductile behavior of materials by using polymer informatics?; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 244; 105025; 7-11-2023; 1-30
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/230881
dc.description.abstract
Predicting the ductile behavior of thermoplastic materials is a significant challenge for both industry and research. In this study, we present a predictive model that classifies polymers based on their ductility degree, which is a relationship created in the present work to approach this problem. It comes from relating two critical and measurable properties from the tensile test. This target was discretized into three classes, more ductile, intermediate, and less ductile. The feature selection process employed for finding the most relevant molecular descriptors for the predictive model used two approaches: a classical one and an expert-guided one. A new metric, called relaxed %CC, was presented to prioritize the models that reduce the misclassification between the extremes of the ductile scale, which is considered more important than confusion with the intermediate class. Our final model was able to successfully classify polymers, achieving a precision rate of 0.91, an %CC of 89.47 % (traditional accuracy), and a relaxed %CC of 100 % (no extremes confusion). This approach has the potential to help both the industry and R&D by selecting polymers with suitable ductile properties for specific applications during the design stage before their synthesis.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
THERMOPLASTICS
dc.subject
TENSILE TEST
dc.subject
MACHINE LEARNING
dc.subject
CLASSIFICATION
dc.subject
EXPERT-IN-THE-LOOP
dc.subject.classification
Compuestos

dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Can we gain insight about the ductile behavior of materials by using polymer informatics?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-08T15:17:51Z
dc.journal.volume
244
dc.journal.number
105025
dc.journal.pagination
1-30
dc.journal.pais
Países Bajos

dc.description.fil
Fil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2023.105025
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169743923002757
Archivos asociados