Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Can we gain insight about the ductile behavior of materials by using polymer informatics?

Cravero, FiorellaIcon ; Ponzoni, IgnacioIcon ; Diaz, Monica FatimaIcon
Fecha de publicación: 07/11/2023
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Compuestos; Ciencias de la Información y Bioinformática

Resumen

Predicting the ductile behavior of thermoplastic materials is a significant challenge for both industry and research. In this study, we present a predictive model that classifies polymers based on their ductility degree, which is a relationship created in the present work to approach this problem. It comes from relating two critical and measurable properties from the tensile test. This target was discretized into three classes, more ductile, intermediate, and less ductile. The feature selection process employed for finding the most relevant molecular descriptors for the predictive model used two approaches: a classical one and an expert-guided one. A new metric, called relaxed %CC, was presented to prioritize the models that reduce the misclassification between the extremes of the ductile scale, which is considered more important than confusion with the intermediate class. Our final model was able to successfully classify polymers, achieving a precision rate of 0.91, an %CC of 89.47 % (traditional accuracy), and a relaxed %CC of 100 % (no extremes confusion). This approach has the potential to help both the industry and R&D by selecting polymers with suitable ductile properties for specific applications during the design stage before their synthesis.
Palabras clave: THERMOPLASTICS , TENSILE TEST , MACHINE LEARNING , CLASSIFICATION , EXPERT-IN-THE-LOOP
Ver el registro completo
 
Archivos asociados
Tamaño: 699.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/230881
DOI: http://dx.doi.org/10.1016/j.chemolab.2023.105025
URL: https://linkinghub.elsevier.com/retrieve/pii/S0169743923002757
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cravero, Fiorella; Ponzoni, Ignacio; Diaz, Monica Fatima; Can we gain insight about the ductile behavior of materials by using polymer informatics?; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 244; 105025; 7-11-2023; 1-30
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES